
Multi-Site Declustering Strategies
for

Very High Database Service Availability

Øystein Torbjørnsen

Department of Computer Systems and Telematics
Faculty of Electrical Engineering and Computer Science

Norwegian Institute of Technology
University of Trondheim

Norway

January, 1995





Abstract

The thesis introduces the concept of multi-site declustering strategies with self repair
for databases demanding very high service availability. Existing work on declustering
strategies are centered around providing high performance and reliability inside a small
geographical area (site). Applications demanding robustness against site failures like fire
and power outages, can not use these methods. Such applications will often both replicate
information inside one site and then replicate the site on another site and thus resulting
in unnecessary high redundancy cost. Multi-site declustering provides robustness against
site failures with only two replicas of data without compromising the performance and
reliability.

Self repair is proposed for reducing the probability of double-failures causing data loss and
reducing the need for rapid replacement of failed hardware. A prerequisite for multi-site
declustering with self repair is fast, long-distance, communication networks like ATM.

The thesis shows how existing declustering strategies like Mirrored, Interleaved, Chained,
and HypRa declustering can be used as multi-site declustering strategies. In addition a
new strategy called Q-rot declustering is proposed. Compared with the others it gives
larger flexibility with respect to repair strategy, number of sites, and usage pattern. To
evaluate availability of systems using the methods a general evaluation model has been
developed. Multi-site Chained declustering provides the best availability of the methods
evaluated. Q-rot declustering has comparable availability but is significantly more flexible.
The evaluation model provides insight and can be used to understand the declustering
problem better and to develop new and improved multi-site declustering strategies. The
model can also be used as a configuration tool by organizations wanting to deploy one of
the declustering strategies.
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Chapter 1

Motivation

Almost every home and office in the most developed countries have installed a telephone,
and by lifting up the handset on his telephone the user is ready to operate the largest
machine man ever have built. Since most of the current switching technology is based
on computers we can also say that this is the biggest computer system ever made. From
this perspective and based on the bad reputation computers have in the population it is
strange that we trust the phone so much. In fact, most of the current businesses could not
operate without telephones today and are making themselves yet more dependent on the
telephone network. It has gone so far that we are carrying the phone with us wherever we
go.

The phone system in some countries is now so reliable that when it fails, the users become
first surprised, then helpless,1 and major events are reported in the headlines of the news.
A major outage in USA in 1991 caused an international airport to be closed down for hours
during the outage.

The current telephone system mainly consists of digital switches interconnected with trunk
lines. A signaling network, also connecting the switches together, is used to set up and
shut down phone calls between two phones. In each switch there is a static table used to
route a call from one input line to an output line. It is obvious that it is not possible to let
this table contain all phone numbers in the country let alone the whole world. This would
have required a huge number of entries and caused a tremendous update problem.

The solution has been to use physical addressing. The first digits in the phone number
decides the switch the phone is attached to and is used to do the routing of a phone call. In
each switch there is two tables: one for the phones connected directly to it and one for the
reachable switches and their number prefix. Calls going to a phone connected to another
switch are routed to this switch based of the first digits in the phone number. If the call
is local it is connected to the line associated with the number. To further reduce the size
requirements and the update problem, this scheme is used hierarchically.

This scheme is simple and robust. Each switch contains its own routing information and
can connect to a target as long as none of the intermediate switches are down. By using
alternative paths downtime can be further reduced. A user will also observe a system
operating perfectly correct as long as he or she does not try to make a call that has to be

1The author recently lost the service for a week when a cable outside his home broke so he know how it
feels.
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Availability > 99:9996%

Response times < 15 ms

Transaction rates > 1; 000 tps

Table 1.1: DBMS server requirements for SCP applications based on [HST+91b].

routed through a failed switch.

Unfortunately there is some disadvantages with this scheme. The most notably is the
inability to let the subscriber keep his phone number when he moves to another part of
the country. Another problem is that there still is an update problem. Even though the
tables are small and changes are seldomly needed, the changes must be applied to a large
number of places each time a change occur and preferably atomically.

With the arrival of still faster, larger, and cheaper computer systems the telecom companies
now see the opportunity to change this, both to their own and to the subscribers conve-
nience. Instead of keeping static routing tables at each node, each time a call is set up the
switches send a request to a computer connected to the signaling network. Upon receiving
the request the computer, which is called a Service Control Point (SCP), translates the phone
number into the physical routing the call should use and returns this to the requester. This
mapping is even in use today but in a small scale.

In the telecom world this application is called Universal Personal Telephone (UPT). SCPs can
be used for much more than UPT, for example charging and credit card verification. The
common characteristics of these applications are that they are a part of the mission critical
part of the telecom organizations and must provide an extremely high availability. While
the existing network is able to operate when a few switches are down, a network based on
a single SCP for establishing calls will be totally inoperable if the SCP fails.

As the reader already might have noticed the SCP providing the UPT functionality contains
a database reflecting the current location of the subscribers. The application of a database
management system (DBMS) therefore falls natural. The requirement to a DBMS that can
be used in the operational part of the telephone network is radically different from normal
business DBMSs. Table 1.1 lists three requirements given by the Norwegian Telecom. Note
that these figures are for a complete system including software and hardware components.
The response times and transaction rates given are not unreachable with current DBMS
technology but the availability figure clearly is. The number given is equal to less that one
hour accumulated outage over 30 years continuous operation! Commercially available
fault-tolerant database servers claim an availability up to 99.99% which is 25 times worse
than the requirement.

Telecom SCPs are not the only application for very high availability DBMSs. According to a
Butler Cox report [Cox90] 25% of the companies asked say that they will not survive without
computer service for more than one day. Relevant applications are medical information
systems at hospitals, banking systems, airline reservation systems, manufacturing systems

2



and point-of-sale (POS) systems. September 1993 a software failure in Oslo, Norway,
almost caused the election to the Norwegian parliament (Stortinget) to be declared void
and rescheduled later the fall with the consequential delays in the parliament’s tasks.

This thesis will try to bring the state-of-the art closer to the availability requirement set by
Norwegian Telecom. The work will both point out problems that must be solved, analyze
alternative strategies and propose new ones. This is a theoretical work and there is not
made any claims whether the goal is met or not, because there are too many uncertain
parameters that only can be decided after the deployment of an actual implementation.

3
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Chapter 2

Fault-tolerance terminology and
technology

This chapter is a short introduction into the fault-tolerance terminology and technology
which are required to read this thesis. The terminology is based on the work of Laprie
[Lap85]. The chapter is ment as an introduction to the field for readers with a background
in database systems. For a full introduction into the field of fault-tolerant computing the
reader is directed to a textbook on the topic.

The chapter starts with a distinction between the terms faults, errors and failures. Mea-
surements of service quality and the nature of faults are then discussed. The chapter ends
with listing some methods that can be used to improve the availability of database servers.

2.1 Faults, errors and failures

A module is an entity with an external interface and a specified behavior. A module
can for example be an integrated circuit (IC), a printed circuit board (PCB), a computer,
a subroutine, a program, a printer, or a complete computer system with software and
hardware. One module can be composed of several submodules, some possibly identical.

Unfortunately, sometimes a module does not behave according to the specifications. A
failure is the event that a module does not meet its specification. An error is the internal
state of a module that causes a failure. A fault is the event that causes the error. Example:
a hard disk drive is a module. The disk drive is exposed to a mechanical shock which
causes a disk block to become corrupted. The shock is the fault, the corrupted disk block
the error, and when the computer later tries to read the block and the drive flags an error
the computer observes a failure. Note that some errors do not need to cause a failure, e.g. if
the disk block content never is read but instead overwritten with new data removing the
corruption.

The user of a module should not only be satisfied with the specification of the module but
should also know some details about how the module fails, how often it fails, etc. This
information is covered by the module’s dependability.

5



2.2 Dependability

Laprie [Lap85] defines dependability as:

“Computer system dependability is the quality of the delivered service such that
reliance can justifiably be placed on this service”

In general dependability is the collective term used to express the quality of all aspects of
how much the user1 can trust (or depend on) a system (or a module). Since there is many
aspects which might be of interest it is of no practical use to quantify dependability into a
single measure. Some proposed measures for dependability are:

Reliability: The probability that the module will meet its specification.

Availability: The fraction of time the module operates correctly.

Maintainability: The time it takes to bring the module into operation after a failure.

Safety: The ability of the module to fail without catastrophic consequences.

Security: The ability for the module to avoid intended misuse.

Performability: A measure of performance fulfillment.

Below, these aspects will be described more in depth. As we will see there is a partial
overlap between the measures.

2.2.1 Reliability

Laprie [Lap85] defines reliability as:

“a measure of the continuous service accomplishment (or, equivalently, of the
time to failure) from a reference initial instant.”

Service accomplishment is the system state where the system provides the specified service,
while service interruption is the state where the delivered service is different from the
specified service.

Mean Time To Failure (MTTF) is the reliability measure most often used. This is the average
time from a module is set into service until it fails. An alternative measure is the probability
of continuously service accomplishment over a given time interval.

1A user is not necessarily a human. A computer can be considered a user of a printer when it uses the
services offered by the printer.

6



2.2.2 Maintainability

Laprie [Lap85] defines maintainability as:

“a measure of the continuous service interruption, or equivalently, of the time
to restoration.”

The measure for maintainability is typically Mean Time To Repair (MTTR).

2.2.3 Availability

Laprie [Lap85] defines availability as:

“a measure of the service accomplishment with respect to the alternation of ac-
complishment and interruption.”

Gray and Reuter in [GR92] gives a less rigorous definition for availability as:

“the fraction of time that a system performs requests correctly and within
specified time constraints”

Based on this definition availability for a module can directly be computed from the
reliability and maintainability measures for the module. AvailabilityA is given by:

A =
MTTF

MTTF +MTTR

SinceA can be computed from the reliability and maintainability measures it is a redundant
measure. On the other hand it represents a single measure incorporating the essential
information from the other two and reflects the essential properties of a module.

Similarly, unavailability U is defined as the fraction of time the system does not provide its
specified service. Thus

U = 1�A =
MTTR

MTTF +MTTR

Since availability for highly available systems will be close to 100% it can be more conve-
nient to use the unavailability figure. An unavailability of 10�6 is much easier to understand
than an availability of 0.999999 (99.9999%).

The definition for availability does not consider that the usage intensity might vary over
time, e.g. that there is a higher request intensity during day than during night. An outage
during a busy period would have worse effects that during hours with a low load. It
should therefore be useful to have an alternative definition that reflects usage frequency,
like:

7



System type Unavailability Availability Availability
(min/year) (in percent) class

U A C

Unmanaged 50,000 90 1
Managed 5,000 99 2
Well-managed 500 99.9 3
Fault-tolerant 50 99.99 4
High-availability 5 99.999 5
Very-high-availability 0.5 99.9999 6
Ultra-availability 0.05 99.99999 7

Table 2.1: Classification of systems based on availability.

“the fraction of requests that a system performs correctly and within specified
time constraints”

Throughout the rest of this document the first definition will be used for availability and
the term success rate for the last one.

Gray and Siewiorek [GS91] groups systems into seven availability classes, see Table 2.1. If
A is availability the availability class C can be expressed as:

C = blog10
1

1�A
c

Managed computers are typically class 2 and commercially available fault-tolerant com-
puters are class 4. The requirement goal set in Chapter 1 equates to class 6 which is the
same as delivered by telecom switches.

2.2.4 Safety

Catastrophic failures are events that can not be justified with the advantages the system gives
(the cost is larger that the earnings). Example: engine trouble in an air-plane should not
cause the air-plane to crash but instead allow the pilot to perform an emergency landing.
Often catastrophes are associated with health threatening events but also significant money
losses and loss of confidence qualify as catastrophic events. The common factor is that the
consequences threaten the existence of the user either it is the air-plane passenger, a bank,
or a software company.

Safety is by [Lap85] defined as:

“a measure of continuous safeness, or equivalently, a measure of the time to
catastrophic failure.”

8



The quantitative measure for safety will therefore be Mean Time To Catastrophic Failure
(MTTCF).

Based on this discussion it is clear that some failures might be catastrophic for one user
but not for a second. A user not taking backups of his or her hard disk is likely to call a
disk crash a catastrophe while one taking backups will not. The fact that the second user
takes backups actually means that he expects disk crashes while the first user is accepting
the higher probability for a catastrophe.

A module which fails gracefully avoiding catastrophic failures is called fail safe or fail soft.

2.2.5 Security

Security is divided into three terms, namely confidentiality, integrity, and availability. [Org89]
defines confidentiality as “the property that information is not made available or disclosed
to unauthorized individuals, entities, or processes”, integrity as “the property that data
has not been altered or destroyed in an unauthorized manner”, and availability as “the
property of being accessible and usable upon demand by an authorized entity”. In short
it can be said that security ensures authorized use and prevents unintentional use. The
reason to include availability into the security definition is to avoid that unauthorized
entities can block authorized accesses.

There is no simple measure like a single number for system security. Department of Defense
in USA has in [Dep85] described a means to evaluate the security level of computer systems
and a classification scheme using the classes “A1”, “A2”, “B1”, “B2”, “B3”, “C1”, and “C2”.

In this work we will not discuss security any further

2.2.6 Performability

Performability can be defined as a measure of ability to provide a specified capacity. It
reflects the fact that a module’s capacity may vary over time as submodules fail and are
repaired. Even if a module gives correct results on the incoming requests, the results can
come too late and not be of any use. See for example [Mey80, STR88] for treatments on
performability.

One measure for performability is the probability of servicing a specified amount of work
over a given time interval.

2.3 The nature of faults

2.3.1 Classification of faults

There are several ways of classifying faults, both based on cause and on the nature of
the fault. Gray [Gra85] gives a classification of the causes for system outages (service
unavailability). Based on Gray’s classification the following categories are suggested.

Hardware: Failures caused by hardware components.
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Software: Failures caused by software.

Operations: Failures caused by the user operating the system. Gray’s classification also
included failures caused by system administration into this class but here it will be
considered to be a part of the maintenance class.

Maintenance: Failures directly caused by repair and system maintenance, both for hard-
ware and software, e.g. replacement of an operating module instead of a failed one
causing the system to crash.

Environments: Failures caused by the environment, e.g. power outage, communication
failure, sabotage, flood, fire.

Process: Outages caused by other reasons, e.g. strike and administration decisions.

A disaster is an event that makes a whole or major parts of a computer site unavailable, e.g.
flood, earthquake, fire.

A fault is either soft or hard. A soft fault is a fault that apparently disappears after the
failure and no repair is needed. A hard fault on the other hand does not disappear and the
module must be repaired before becoming operational again. Soft faults are also called
intermittent or transient.

Most modules are manufactured in multiple copies and some faults will typically occur
on all these copies. These faults, which is called design faults, can be caused by mistakes
in both the specification, design, and assembly/implementation of the module(s). Physical
faults on the other hand affects only a single instance of the module and replacing with an
identical new module will repair the problem. Even though the design fault is latent in
every unit, it is not necessary that all the users will encounter the fault.

Physical faults and design faults differ greatly on how they are repaired. The physical
fault is repaired by replacing the single failed unit. Design faults however are repaired
through two steps. First, the fault is fixed so that all units manufactured after this date
will not exhibit this fault. This obviously does not mean that the fault automaticly will
be removed from modules manufactured before the fix. To fully repair a design fault, all
existing units must be fixed (through bug fixes), also for those that have not encountered
the failure but potentially will (preventive repair). A corrective strategy can also be chosen
that allows one to delay the fix until the fault is encountered the first time or is causing
serious problems for the user.

Since fixing a design fault means that the module has to be changed, the repair can
result in introducing new design faults. Adams [Ada84] therefore warns against uncritical
preventive repair.

Software and hardware faults differs in several aspects as we will see below.

2.3.2 Hardware faults

The failure rate of a hardware module typically varies over the lifetime as shown by Figure
2.1. In the infancy period the failure rate is high due to manufacturing defects. After a
short time the module becomes mature and the failure rate stabilizes on a low level. When
the module approaches the end of the lifetime the module is worn-out and the failure
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Burn in Wear out

Failure rate

Life time

Figure 2.1: The bathtub curve. The failure rate depends on the module life time.

rate increases again. Hardware reliability can be significantly improved by removing the
infancy and worn-out periods. The infancy period is removed by running the hardware
through a burn-in in the factory before the customer receives it. Replacing the module
when it becomes close to be worn out removes the second problem.

MTTF for a hardware module usually means operating time. Unfortunately, many vendors
use MTTF to specify failure rate in the bottom of the bathtub curve and separately gives a
lifetime for the module. See for example the data sheet for the Fujitsu M2622SA, M2623SA
and M2624SA2 hard disk drives which claims a MTBF3 of 200,000 power-on hours (22.8
years) but a component life of 5 years [Fuj91].

According to [GR92] the ratio between hard and soft faults for printed circuit boards (PCBs)
varies between 1:1 and 1:10 with an average of 1:5.

The operation environment has much influence on the hardware reliability. A rule of
thumb is that a temperature reduction of 10 �C can increase the lifetime with a factor two
[ES92]. Shocks, vibrations, and thermal changes causes mechanical stress on the hardware
and reduces the lifetime and can directly cause a failure.

Hardware has not only increased in speed and capacity and reduced the cost over the
time, but also the reliability has been significantly improved. This reliability improvement
can mostly be contributed to improved design, a higher integration factor, and a lower
component count [Gra90]. Also power consumption is reduced which gives lower tem-
peratures and therefore longer lifetimes. Disk drive makers are claiming observed MTBFs
of 500,000 hours [GR92] and Motorola sells processor boards with a 1,000,000 hours MTBF
(114 years) [Mot91]. These figures are based on the failure rate of a high population of
modules operating under ideal conditions (i.e. no accelerated testing).

2This way of using MTTF is not unique for Fujitsu, but are also used by many other manufacturers of hard
disks.

3MTBF=Mean Time Between Failures. Valid for components that can be repaired. In this work we will
consider MTTF and MTBF to be the same.
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Figure 2.2: Software failure rates for an IBM product. The graphs show the distribution of faults
found (a) and occurred (b) as a function of MTTF. Data based on [Ada84].

2.3.3 Software faults

Software faults differs significantly from hardware faults. Software is not exposed to
physical faults, only design faults. This means that once fixed, the fault is removed forever.
So, if the software is perfect and there are no faults in it, it will never fail! Unfortunately
things are not so easy.

Virulent and benign faults

Adams presented in [Ada84] a study from IBM based on statistics on the failure rate of
their system software products. The study showed that most failures only occurred a few
times (Figure 2.2-a) and only a few bugs caused most of the failures (Figure 2.2-b). The
figures show that 4% of the faults found contributed to 78% of faults occurred. (Even
though this is only for a single product, the other products presented in the same work
have a similar distribution.) Adams called this class of faults causing most of the failures
for virulent design errors. The defects not being virulent are called benign.

The figure also shows that most faults have so long MTTF that each user will probably see
only a few of them. Repairing all faults should therefore not be necessary. The study also
showed that correcting a fault often resulted in new unknown faults.
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Bohrbugs and Heisenbugs

Gray in [Gra85] classify software faults as either Bohrbugs or Heisenbugs which correspond
to respectively hard and soft faults. Bohrbugs manifest themselves each time the code is
executed while heisenbugs only on some occasions tend to cause an error. Bohrbugs are
easy to single out and correct and are mostly removed during testing before the software
leaves the manufacturer. Heisenbugs on the other hand are nondeterministic. They show
up only under special conditions which are created by usage pattern, the environment,
other software, and internal state. It should be noted that the latent bug is in the software
itself, not directly caused by the environment.

An experiment done at Tandem showed that one out of 132 software faults in a production
software product (a spooler) was a bohrbug [Gra85]. It is dangerous to make a conclusion
on this single figure alone but it confirms the general experience that the majority of
software faults in production code are heisenbugs.

One nice characteristic of a heisenbug is that it apparently has disappeared if the code is
executed again a second time. The bug has not been removed but occurs only under very
special conditions. This means that the user does not need to get his software fixed each
time he or she encounters a failure but instead just reruns it. It can take days to get a new
version of the software but only fractions of seconds to rerun it. Lee and Iyer [LI93] show
that data collected by Tandem indicates that more than 80% of all failures are masked by
process pairs. Due to underreporting of non-fatal faults this number can be as high as 96%.

The trend of improving reliability of hardware has not been followed up by software
technology and a larger fraction of failures is caused by software [Gra90]. The reason for
this is that software has grown more and more complex over the years. The improvement
in the software development process has been consumed by this increase in complexity
resulting in no overall improvement in software reliability.

2.4 Techniques for high availability

There are several ways to attack the problem of achieving high system availability. Fault-
tolerance falls immediately into mind, but might not alone be sufficient. It can be possible
to achieve the desired availability both faster and for less cost by using other methods.
Faults are only one source for service interruption but also maintenance operations can
cause downtime. This section devotes to methods for achieving high availability.

2.4.1 Fault-tolerance

Fault-tolerance is based on the fact that faults exist and that it is possible for the computer
system to handle them without external intervention. By masking a fault, the fault does
not cause a failure and the module does not become unavailable, i.e. causing service
interruption. It should be noted that fault-tolerance is not a goal in itself, but rather a mean
to achieve better dependability with respect to both availability and reliability.

Redundancy is the keyword to fault-tolerance, either as time or space redundancy. Space
redundancy means that a redundant number of modules are used to process a task. On the
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other hand, when the same module does redundant work on a task by checking the result
(e.g. by processing it multiple times), it is called time redundancy.

The redundancy can be used to both detect, mask, and recover from faults. Let two or
more modules with the same specification perform the same task and compare the results.
If the results differ, at least one of the modules has failed and the failure can be detected. By
taking a majority vote (using three or more modules) it is also possible to mask the failure.
The modules need not be identical (rather contrary) but should have the same external
specification. Such different modules can be used to detect design faults. Design diversity
[Ran75, Avi85] is a technique used to achieve this.

The redundancy does not have to have identical functionality as the module to be checked.
A single parity bit can check for single bit errors in a 32 bit word and by increasing it to
seven checksum bits, single bit errors can be corrected and double bit errors detected.

When an error has been detected and eventually masked, the failed module has to recover
into a consistent state. In case of a transient failure, the failed module should be brought
back into service either through recovery of its internal state or through a complete restart.
If it is a hard fault, the component should be taken out of service and isolated from the rest
of the system until it is repaired.

Even though a module is fault-tolerant, it can not handle all kinds of errors. The module is
only prepared to handle a known set of errors and if an error is outside this set, the module
will fail. Likewise, the fault-tolerance mechanism can itself fail and cause a failure.

2.4.2 Fault avoidance

It is said about energy, that “the best energy source is the energy that you save”. This also
applies to fault-tolerance. It is better to avoid faults at all instead of having to handle them.
After they have occurred it is difficult both to detect and correct them.

High reliability: Through design, implementation, and testing the module should be built
with reliability in mind. Quality assurance, highly skilled designers and program-
mers, and a systematic testing approach are keywords here. The modules should be
designed with a high tolerance with respect to the environment (e.g. temperature,
mechanical shock, power spikes, input) and high resilience.

Simplicity: Simpler designs contain less faults than complex ones. They contain less sub-
modules that can fail and are easier to understand, build and test. Reducing the
number of lines of code in a program will also reduce the number of bugs!

Burn in: A burn in increases the availability of a module since it removes the infancy
problems of the module and “Monday products” are eliminated. Testing can be
considered burn in for software.

Automatic maintenance: Human mistakes can not be avoided. Automatic maintenance
procedures (e.g. automatic backup) can remove many of the faults human mistakes
can cause.

“Friendly” user interfaces: All maintenance can not be done automatic. Making easy
to use user interfaces reduces the number of human mistakes. Make them self-
explaining, avoid cryptic codes, and validate input data.
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Environment independence: The module should avoid relying too much on external en-
tities like cooling, power, and maintenance. It is obviously impossible to avoid
using these completely but the module should tolerate that they fail, e.g. by using
uninterruptible power supplies to handle power outages.

Security: Malign attacks on a module can cause a failure and therefore reduce the avail-
ability.

Resource control: A module has a limited performance and is specified to handle a given
load. Overloading can cause the system to reject all requests and therefore threatens
the availability. The module should handle overflows gracefully by rejecting requests,
either by priority or by random. Alternatively, the module can be dimensioned with
a sufficient over-capacity to handle the peeks. This strategy is also attractive since
a module operating close to its performance limit is more exposed to failures than
a module with a normal load (greater chance for resource queuing, conflicts, and
deadlocks).

Restarts: Over time, the chaos in a running program increases, e.g. heaps become frag-
mented, counters grow towards overflow, and the probability for a latent error in-
creases. These situations are seldom encountered during testing. Regular preventive
restarts could therefore reduce the number of failures.

2.4.3 Maintenance

The value of fault-tolerance is limited without repair. Since a hard fault should cause
in isolating the faulty component, there is a reduction in the level of redundancy. The
level of redundancy is limited and after some failures the redundancy is lost and failures
can not be masked any more. Often a system is single fault-tolerant, i.e. only one faulty
component can be handled. To avoid a second fault causing service interruption, faulty
modules should be repaired or replaced.

Also non-fault-tolerant systems must be repaired. The system will be unavailable from
the failure until it has been repaired. It is therefore important to do the repair as soon as
possible.

Low MTTR: By reducing the Mean Time To Repair (MTTR) the probability for a double
failure is reduced. Double failures will result in outage time and therefore reduced
availability. This number is given by both the maintenance organizations ability to
repair faults (see Section 2.4.6) and the systems maintainability.

Planned maintenance: Repair is done only at predefined time intervals. All failed mod-
ules are repaired. If the service intervals are long, the MTTR will be long.

Corrective maintenance: Repair is done as soon as possible after a failure has occurred.
This reduces the MTTR compared to planned maintenance.

Preventive maintenance: Some faults can be avoided by replacing modules before they
fail, e.g. by installing bug fixes before the bugs are encountered or replacing the color
band of a printer before it is worn out. To be able to do preventive maintenance there
must be means to find out that a component is close to the end of its lifetime, e.g.
lifetime predictions or testing. Preventive maintenance is no alternative to repair.
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2.4.4 On-Line maintenance

Traditionally computer systems have to be taken off-line for maintenance. This is undesir-
able for users that want 24 hours a day, 7 days a week service time, i.e. continuous available
service. For these users the system is unavailable during off-line maintenance and if all or
some of the maintenance can be done while the system is running, the availability will be
improved.

On-line maintenance can be compared with doing maintenance on a car when it is in use.
Clearly a car is not designed for this and several technical demanding mechanisms have
to be added to achieve this.

Some relevant maintenance operations that might be done on-line are:

Diagnostics: Test of system components and detection of failed or marginal modules.
Problems: how to test without affecting user tasks and how to locate the failure to
the correct module.

Repair: Replacement of failed hardware modules. Problems: electrical and mechanical.

SW change: Upgrade or installation of new software. Problems: when should the new
software take over for the old and how to handle incompatible data formats between
old and new version.

System scaling: Increase or reduction of system capacity, e.g. transaction rates, number of
users, data volume, and response delay. Problems: must be a scalable architecture,
integration of new modules.

System reorganization Change of organization of data and applications, e.g. creation of
database indices. Problems: enable access to data that is reorganized during opera-
tion.

Image copy Making a copy of the consistent system state (virtually a snapshot) for backup,
history, or transfer purposes. Problems: how to create a consistent image.

2.4.5 Environment precautions

The environment is also a source for faults. Availability can be improved by being prepared
to handle them.

Security: Physical security precautions hinder unauthorized personnel access to the sys-
tem reducing the sabotage threat.

Air conditioning: Stable and cool room temperature reduces the failure rate and prolongs
the lifetime of electronic components.

Power supply: The power supplied by electricity utilities has in addition to noticeable ser-
vice interruptions also small irregularities like power spikes and bad sine waveforms.
These are often not noticeable for humans but can cause problems for computer equip-
ment. Power conditioners and uninterruptible power supplies (UPS) overcome most
of these problems.
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Multiple sites: A natural disaster can knock out a whole computer site (e.g. fire or earth-
quake). A second site located sufficiently far away will probably not be affected by
the disaster and can take over the tasks of the destroyed site.

2.4.6 Maintenance organization

Maintenance organization performance (MOP) is a term expressing the quality of the organi-
zation doing maintenance on a system. MOP will have influence on the availability of the
system. The following aspects of the maintenance organization should be considered:

Change management: All changes should be analyzed, planned and tested extensively
before employed to the production system. Changes are a major source for problems.
“If it ain’t broken, don’t fix it”.

Trained personnel: Trained maintenance personnel is less likely to do mistakes resulting
in failures during maintenance operations.

24 hour shift: If maintenance personnel is available for corrective maintenance both day
and night, the MTTR is significantly reduced.

Spares availability: Repair of failed components must be postponed until spares are avail-
able. An on-site spare stock can reduce MTTR.

2.4.7 Disaster recovery

Even though it is possible to reduce the chances of a disaster knocking out a site, it can
not completely be avoided. In the worst case, a disaster will be a catastrophe threatening
the existence of the users. The owners should therefore be prepared on disasters and
ready to recover the system in case of such an event. A short recovery-time reduces the
unavailability and therefore improves the availability. The use of a second standby site
will avoid most of the unavailability (only the time to switch systems), but the system will
now be single fault-tolerant until the crashed site has been recovered. A fast recovery will
reduce the chance of a double-fault. The following aspects should be considered:

Disaster plans: It should exist detailed plans on what to do in the case of a disaster.
Thinking on what to do should not be delayed until it has happened.

Off-Line backups: Take backups regularly and keep an continuous incremental log. These
should be kept on a place that not will be affected by the same disaster as the system,
e.g. in a safe and/or on another location.

Standby system: Keep a system ready to take over the work of the failed system. This
can for example be done through an agreements with another company in the same
situation allowing you to run your software on each others systems in case of a
disaster.
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Chapter 3

DBMS servers and dependability

This chapter will discuss database technology seen from the viewpoint of highly depend-
able systems. Availability, safety and performability are the measures for dependability
that will be focused upon.

3.1 DBMS dependability

C.J. Date in [Dat86] defines a database system as:

“... a system whose overall purpose is to maintain information and to make it
available on demand.”

and later continues:

“... a database system involves four major components: data, hardware, soft-
ware, and users.”

The term “users” includes both end-users, application programmers, and the database
administrator (DBA). “Hardware” is all hardware components used from power supplies,
disk drives, CPU, communication lines, and the user terminal. “Software” includes the
database management system (DBMS), operating system, compilers, communication soft-
ware, and application code.

This definition includes several aspects which are important seen from a dependability
viewpoint.

� The phrase “maintain information” states that the information has to be kept in a
correct state and protected against unintended changes. This statement ensures the
correctness of the information.

� The phrase “make it available on demand” says that there is an availability require-
ment on the database system.
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� By including the users into the definition, the dependability of a database system
also includes user actions. A database system should therefore be robust against user
mistakes.

� Since the application is a part of the database system,the dependability of the database
system depends on the quality of the application code.

Based on Date’s definition, database systems are a huge field to work in. This work has
no ambitions to provide a solution to all the aspects of dependability for database systems
but instead focus on the dependability aspects relating to the server part of a client-server
database system architecture. This includes the DBMS software and the server operating
system, communication software, hardware, and environment, but excludes the quality of
the application software, the end-user actions, and all aspects of client computers software,
hardware and communication.

The rest of this chapter will discuss client-server architectures and state-of-the-art database
management system technology in general with a focus on dependability. Chapter 4 will
look on hardware and operating system technology and describe an architecture that will
be the basis for the rest of this work.

Going back to the definition for dependability given in section 2.2 on page 6, we see that
“quality of the delivered service” is an essential component of the definition. Several of
the measures given for dependability also incorporate the concept “service”.

3.2 Transaction processing and complex query processing

On-line database processing can mainly be grouped into two classes on-line transaction
processing (OLTP) and on-line complex query processing (OLCP). In general we can say that
OLTP is database processing using small transactions and OLCP is using large transactions.
Typically an OLTP transaction accesses few tuples in the database (<10) using random
access while a complex query accesses many tuples (>100) without knowing the exact key
value of the tuples. OLCP is often used for interactive batch analysis and sequential search
for data in a database. The transactions are mostly reading the data and using set operation
like join and union. OLTP transactions execute single tuple operations which often update
the tuples. There is no clear border between OLTP and OLCP and there might be problems
with classifying some queries. On the other hand, other queries are quite distinguishable.
Table 3.1 lists the most typical differences.

OLTP systems and OLCP systems have very diverging requirements and design goals.
OLTP systems focus on low request latency, predictable response times, and a high level of
concurrency. OLCPs on the other hand is more concerned about high efficiency and high
data throughput. This is confirmed by the fact that there are vendors specializing in these
areas. A good example is Teradata [Ter85] which makes the DBC/1012 database machine
optimized for OLCP but with poor OLTP performance.

OLTP transactions are characterized by response times less than 10 seconds and therefore
do not allow user interaction during the execution of the transaction. Complex queries on
the other hand live for a long time and allow the user to interactively issue commands to
the DBMS, e.g. through an interactive query language like SQL.
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OLTP OLCP

Number of accessed tuples few many

Execution time short long

Time constraints yes no

Access pattern random sequential

Operation type tuple set

Access type read/write read only

Table 3.1: Characteristics of OLTP and OLCP transactions.

It is desirable to run both OLTP and OLCP concurrently on the same database with normal
transaction ACID properties (atomicity, consistency, isolation, and durability) maintained.
For current systems this involve a large threat against the availability for OLTP services.
A conventional two-phase-locking strategy [BHG87] will block small OLTP transactions
conflicting with complex queries that might live for minutes and hours. This violate
response time constraints defined for the OLTP transactions and therefore result in an
intermediate service interruption seen from issuers of the OLTP transactions.

The consequence of this conflict has been that large users employ two systems, one for
OLTP and one for OLCP. The OLTP system maintains the current up-to-date data. The
OLCP system is at regular intervals (e.g. each night) reloaded with a up-to-date dataset.
Obviously this creates new problems since the OLCP does not have access to the most up-
to-date data. One solution to this problem is a multi-version concurrency control strategy
[BHG87] which ensures that read operations do not block update operations. Another
solution proposed in [HST+91b] is to provide a second replica of the data. When an OLCP
transaction is issued one of the replicas are frozen in a transaction consistent state. The
OLCP transaction accesses the frozen replica while OLTP transactions uses the other. When
the OLCP transaction commits it checks for eventual conflicts which will cause it to abort
and roll back. The updates done by committed OLTP transactions are then applied on the
frozen replica. Note that a OLCP transaction only reading data can not result in conflicts
and will therefore never roll back.

Many database maintenance operations have the same distinguished features as OLCP
transactions. Inserting or deleting columns in a table is an example on a maintenance
operation which will take a long time if the table is large. Most systems will not allow
transactions to access the table during reorganization.

3.3 Client-server technology

Client-server technology is a hot topic in both the commercial world and as a research topic.
The basis for this technology is two main components: servers and clients. The clients are
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Server

Clients

Figure 3.1: A client-server configuration.

connected to servers with communication lines. Figure 3.1 shows a simple (but typical)
configuration with one server and multiple clients.

A server provides a predefined set of services to the clients. More complex configurations
are also possible with both multiple servers and multiple clients connected to the same
network. A client using a service provided by one server can also itself be a server for
other clients. It is even possible for a server recursively to use itself as a server.

The term server or client should not be associated with a single computer but rather with
software systems running on some hardware units. Since a single computer can both run
multiple servers and clients, it should be possible to view these as separate components. It
is also possible for services to migrate dynamically between different computers depending
on load and availability.

There are several reasons to choose a client-server architecture: Specialization, organiza-
tional, mobility, heterogeneity, security, and not at least cost-efficiency.

Specialization: Some tasks require special hardware or software,e.g. a printer or a modem.
A server can control the access to those units.

Organizational: The organizational structure of the users of the system can motivate the
client-server architecture. By placing all user files on a central location, backups
can be taken by a single person instead of spreading the responsibility to many
people. Another example is that an organization providing the service to search for
information in a database to users outside the organization but still maintain the
ownership of the database.

Mobility: Some services are impossible or too expensive to implement with mobile com-
puter equipment. By using a mobile client connecting to a central server (e.g. through
telephone lines and a modem) the user can access a non-portable resource. The user
might also often change client but need to access the same resource (e.g. his own
files).
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Heterogeneity: A fixed predefined protocol for client-server communication enables cli-
ents of various architectures to be used, both with respect to hardware and software.
This protects investments in equipment and do not lock the organization to a single
supplier.

Security: It is easier to protect a single site against physical attacks done by none-authorized
persons.

Cost-efficiency: Instead of giving each user their own resource it might be more economical
to let them share one or a few central resources. A Cray supercomputer is a compute
server which a single user can neither afford nor utilize fully himself. The resource
should instead be shared with many others. There are also cases where one big
resource is more cost efficient than many small ones.

Implementors using client-server technology face the problem of how to split applications
into a server part and a client part. Below follows a list of guidelines for client-server
design.

1. The server functionality should be general and independent of application, i.e. stan-
dardized.

2. The client-server communication protocols should adhere to international standards,
both on the transport level and the application level and support heterogeneous
clients.

3. Communication should be insensitive to delays. The data volume sent should be
low.

4. As much as possible of the processing should be done on the client side to achieve
high server throughput and low latency.

5. Easy to use and/or program.

In general, some of these points are incompatible and compromises must be made.

3.3.1 Server semantics

In [Cri85, Cri90] Cristian divides the system specification of a server into three parts, the
standard semantics, the failure semantics, and the stochastic behavior. The standard semantics
is the functional requirements of the system, i.e. how the system is intended to behave.
The failure semantics is the specification of how the server is expected to fail (if it ever
fails) and which the users of the service must be prepeared to handle. If the server has
a failure outside the failure semantics it is considered to be a catastrophic event. Figure
3.2 shows the relationship between Cristian’s classification and possible outcomes from
a server request. Either the server returns an expected answer, fails in an expected way,
or fails in an unexpected way. The stochastic behavior expresses the minimum probability
ps that the system should respond according to the standard semantics and the maximum
probability pc for a catastrophic event.

Cristian classifies server failures as in the following list:
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Figure 3.2: The space of possible outcomes from a server request.

Omission failure The server does not respond to a request.

Crash failure The server does not respond to a request and will not re-
spond to any more requests.

Timing failure The response from the server arrives too early or too late.

Performance failure The response from the server arrives too late.

Response failure Incorrect execution of a request.

Value failure Incorrect response to a request.

State transition failure The state transition caused by a request is incorrect.

Arbitrary failure Any failure outside the standard semantics.

These classes are not disjunct since they partly overlap or is contained in each other. Value
and state transition failures are both subclasses of response failures, performance failures
are a subclass of timing failures, etc. Figure 3.3 shows how the sets of failures relates.

The failure semantics of a DBMS server is traditionally expected to be performance failures
(replies on requests are coming too late) and omission failures (transactions are rolled back
in the case of a failure or never responded to if the system is down). When a response is
received from the DBMS it is assumed that the execution is according to the ACID rules
with a correct database state transition and a correct answer.

The standard semantics of a DBMS server is not so clear since there are many alternative
ways to distribute DBMS functionality and application code over the client and server. The
question to ask is how this distribution can be done to achieve as good service availability
as possible. The next sections try to answer this.
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Figure 3.3: Failure classification.

3.3.2 Functionality of a DBMS server

Figure 3.4 shows four alternatives for distributing functionality between a client and a
server. In alternative A the server only provides single tuple 1 or disk page access to
the database including access methods, concurrency control, logging and recovery. The
application interface, query compiler, query optimizer, and query executer is located in
the client. A join between two relations is for example executed in the client by fetching
single tuples or disk pages from the server. This means that the DBMS partly resides on
the server, partly on the clients. The DBMS uses a communication protocol which can be
proprietary for the DBMS. The application software executes only on the client together
with presentation software like a terminal driver or a window system like MIT X11.

In alternative B all DBMS functionality is placed on the server. The interface to the server
is the DBMS query language (e.g. SQL) which the application can access directly. This
alternative clearly separates application and DBMS by assigning the DBMS to the server
and the application to the client. While the interface between the application and the DBMS
in alternative A could be a call level interface (CLI) where the DBMS is accessed through
procedure or system calls, the interface for alternative B is the communication protocol
used between the client and the server.

Alternative C allows the application to partly execute on the client, partly on the server.
The interface between the application and the DBMS is a CLI at the server side. The
communication between the client and the server is handled by the application.

Alternative D places the entire application onto the server leaving only a presentation
interface on the client. The client is then no more than a terminal attached to the server

1We will throughout this work assume the relational database model. But, this does not exclude that the
results also can be employed on other models like the hierarchical, network, or object oriented database models.
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Figure 3.4: Alternative placement of DBMS and application in a client-server environment.

and the distribution is handled by the presentation software. This corresponds to the
traditional mainframe solution.

Alternative C has been the first step towards real client-server processing. It has been
driven by the application developers caused by lack of standards and available products.
New standards like ISO SQL, ISO RDA, and ISO TP standards are pulling in the same
direction toward solutions based on alternative B. Commercial DBMS vendors are start-
ing to provide products supporting these standards. Several Object-Oriented DBMS’ are
providing functionality similar to alternative A.

There obviously are more alternatives than these four. Some are combinations of the four
above. It is for example possible to imagine that the server only provides services for
reading and writing disk pages without any file system or locking primitives. But, in this
case we do not talk about a DBMS server and have no concurrency control between clients.

The list on page 23 contained guidelines for design of client-server applications. Applied
to the four alternatives A, B, C, and D we get the following table:

Alternative + 0 �

A 1, 4 5 2, 3

B 1, 2, 5 4 3

C 3 1, 2, 4, 5

D 2, 5 1, 3, 4

The table shows how well the four alternatives follow the guidelines. The “+” column lists
the number of the guidelines well taken care of, “�” the guidelines which is ignored and
“0” those partially taken in account.
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3.3.3 TP-SQL service

Based on the design guidelines listed in the start of section a solution between B and C
combining the best from both seems to represent the best client-server solution. This is no
unique result since both database vendors and standardization bodies tend to have come to
the same conclusion. The hybrid, which in the following will be called the TP-SQL service,
is from the name based on SQL and is especially suited to OLTP. As mentioned before,
OLTP consists of small transactions accessing few tuples without user interaction. This is
not very well supported by a pure B solution since an SQL call must be issued for each
tuple operation resulting in a large number of messages. A transaction accessing three
tuples will therefore result in four messages (three tuple statements and one COMMIT WORK
statement) sent from the the client to the server and four corresponding reply messages.
Combining these four statements into a single message with a single request and reply
greatly reduces the communication. This is easy to solve by allowing a request to contain
a sequence of SQL commands. Regrettably this is not sufficient since some of the SQL
commands in the same sequence can depend on results from earlier commands in the
sequence, as for example to follow a relationship between two tuples. SQL as in the SQL
92 standard [Org92a] is not complete with this respect.

The C alternative on the other hand allows the server to run a part of the application code
which can issue a sequence of SQL commands. Unfortunately this means that the server
must provide application code execution and the service protocol must be defined and
implemented by the application programmer.

The solution to this problem is to extend the SQL language to a complete programming
language. Commercial vendors (e.g. Sybase with Transact SQL) have done this by extending
SQL with a full procedural language which includes variables and control structures like
loops, branches, procedures, and exceptions. This work has been followed up by ISO
which in current proposals suggests to include this functionality into a future SQL standard
(SQL-3 [Org92b]). This also opens up for precompiled SQL procedures greatly improving
performance. Figure 3.5 shows an example of an SQL procedure for the TPC-B benchmark
transaction [Gra91] written with the proposed SQL-3 standard.

Some readers might claim that user-written SQL procedures are a part of an application and
that TP-SQL services should be classified as an alternative C system. On the other hand,
there are some significant differences. The client-server protocol is not the responsibility
of the application programmer, it adheres to standards and the procedural language is
restricted to only access the database resources. As we will see later this makes up a
significant difference for the reliability and security of the server.

3.3.4 Dependability aspects

A nice property of the client-server model is that it is also very well suited to fault-tolerance
and dependable database systems.

As seen before, software is a significant cause for errors in computer systems. The number
of errors in software also seem to be proportional to the number of lines of code and
reducing the code volume should therefore reduce the total number of failures and therefore
also increase the reliability. Another important observation is that a software error on the
server can have much more severe consequences than an error on the client. If the error
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MODULE tpc
LANGUAGE SQL;

.

.

.
PROCEDURE tpcB(:account NUMERIC(9),

:branch NUMERIC(9),
:teller NUMERIC(9),
:delta NUMERIC(10),
:balance NUMERIC(10));

BEGIN
BEGIN WORK;
UPDATE accounts

SET Abalance = Abalance + :delta
WHERE Aid = :account;

SELECT Abalance INTO :balance
FROM accounts
WHERE Aid = :account;

UPDATE tellers
SET Tbalance = Tbalance + :delta
WHERE Tid = :teller;

UPDATE branches
SET Bbalance = Bbalance + :delta
WHERE Bid = :branch;

INSERT INTO history (Tid, Bid, Aid, delta, time)
VALUES (:teller, :branch, :account, :delta, CURRENT);

COMMIT WORK;
END;

.

.

.
END MODULE;

a)

EXEC SQL CALL tpc.tpcB(:account, :branch, :teller, :delta, :balance);

b)

Figure 3.5: SQL-3 procedure example. a) The TPC-B benchmark transaction written as an SQL-3
procedure. b) Invocation of the procedure from embedded SQL.
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causes a fault on the client, only the users of that client is affected. If the server fails, all
the users are affected. It should also be noted that system software like operating systems
and database systems have a lower failure rate than application software. System software
have often been in longer use and are better tested than applications.

Based on these assumptions we can make a simple analytic model for accumulated service
unavailability caused by software errors. Given the following variables:

rs = Fraction of code of a transaction running on the server
rc = Fraction of code of a transaction running on the client
Is = Failure intensity of server code (failures/lines)
Ic = Failure intensity of client code (failures/lines)
nc = Number of clients
lc = Load caused by one client (transactions/second)
s = Code volume executed for each transaction (lines/transaction)
tr = Average repair time of a failure (seconds/failure)
U = Unavailability due to software failures per time unit

and:

V = lcncs = Total lines of codes executed per time unit
rsV = Lines of code executed on the server
rclcs = (1� rs)lcs = Lines of code executed per client
fs = rsV Is = Number of faults per time unit on the server
fc = (1� rs)lcsIc = Number of faults per time unit on each client
nctr = Average total time unavailable caused by a server failure
ncfc = Accumulated number of client failures per time unit

We will here assume that a server failure causes all clients to be blocked for a time t r, i.e.
accumulated time unavailable for a server failure becomes n ctr. This is likely for severe
errors in the operating system and the DBMS kernel but not so much for application code.
Based on this assumption the total unavailability for a given time interval then becomes:

U = fsnctr + ncfctr

= rslcncsIsnctr + nc(1� rs)lcsIctr

= lcncstr(rsIsnc + (1� rs)Ic)

= lcncstr(Ic + (Isnc � Ic)rs) (3.1)

The interesting part here is (Isnc � Ic)rs. It shows that the unavailability increases with
increasing fraction of code running on the server as long as I snc > Ic. For a system with 100
clients that means that the client must run code with 100 as many errors pr. line as the
server. For systems with a large number clients and reasonable client code quality the
condition is likely to hold. The conclusion must therefore be that the server should run as
little of the total code volume as possible favoring systems based on alternative A (best)
and B (fair).

Usually system software like operating systems, DBMSs, and communication software
have a higher technical complexity than application code and is complicated to debug. It
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is therefore reason to believe that the error intensity should be higher for system software.
To compensate for this the developers put much efforts into the production of this kind
of code through careful design and thorough testing. The operating system is also used
by a large number of applications and users with the likelyhood for eventual errors to
be spotted and fixed. It is therefore reasonable to believe that system software has better
quality than application code.

Even though a failure in an application running on the server is unlikely to directly crash
the server, indirect effects can result in a crash. A failure will cause extra stress on the
surrounding system. The failure represents a (possible) new execution path which again
might introduce new failures. The failure must also be detected, masked, and repaired
meaning more work for other modules in the server. This again results in higher load of
the system moving it closer to its performance limit. In [BEHS86] it is shown that a systems
with a low load is less exposed to failures than a system with a high load.

Since bad application code might be a serious threat for server availability, the server should
not be allowed to run any application code. The system administrator of the server can not
make any guarantees for system availability if application programmers freely can run
parts of their software on the server. Thus, the quality of all software running on the server
including application code must be known to make any guarantee on the availability.

All new server software represents a threat to server availability. Replacing software often
means that the service must be stopped, data converted, the new software loaded, and the
new server started, tested, and set into operation. During the time this work is done the
service is unavailable. Modern microkernel-based operating system partly solves this by
port migration [RR81, RAA+88].

New software releases often have new latent bugs and the behavior from old revisions
has changed, intended or not. New software should therefore not be introduced without
rigorous testing and only at well planned occasions with procedures ready to go back to the
old version in case of serious trouble. It is also advisable to do few software replacements,
but with larger increments.

New client software is not that critical. The new software can be introduced with small
increments, one client by another. During installation only a single client is blocked and can
be scheduled to non-office hours. By keeping the functionality of the server to a minimum
most software upgrades are only necessary on the less critical clients improving server
availability. This conclusion is also supported by the fact that application software are
more dynamic than system software. Applications have reduced quality and change with
changing user requirements. System software is more often locked to a fixed specification
(e.g. an international standard).

The conclusion so far in this section has been that no application code must be allowed to
execute on the server. So what about SQL procedures? For purists the answer will be no,
but on the other hand they represents a compromise between reliability and performance.
The consequences of a failure are also not too serious as for general application code. The
expression richness of the language is very restricted and the procedures are executed
under DBMS resource and transaction control.
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3.3.5 DBMS server availability

The definition of availability given in chapter 2 is based on the measure “fraction of time”
which do not match the request-response nature of a server where a response is either
correct or not. This presents a problem since requests and responses represents events in
time, not periods. A simple way out is to define a service unavailable for the interval from
a given request gets no correct response, until a request gets a correct response again.

A DBMS server (and servers in general) has different availability measures based on the
observers’ viewpoint and their service definition. The end user of the system sends DB
requests and receives replies. The service expected depends both on the DBMS server
itself, communication channels, and client hardware and software. For the user it is
equally important that all these components operate correctly. More important, he or she
is not able to observe any degrees of quality except response latency. Either the server
responds with an answer within the latency limit or not.

The DBMS server administrator on the other hand sees one server and a large collection of
clients. For him or her the most important goal is to have the server and most clients operate
correctly. If a client has a malfunction only one (or a few) user does not get its service, but
if the server is out of service, nobody can get their work done. The server administrator
does not consider the system unavailable even though a client is out of service.

The service availability definition seen by the client is therefore:

The service is available if more than a fraction S of the requests sent from the
client gets a correct response with a latency less than ` client after the request was
sent measured over a time interval �t.

An error response due to a system condition (e.g. a transaction rollback caused by resolving
a deadlock) is not considered to be a correct response even though it occurs inside the
allowed latency time.

The service availability definition seen from the server becomes:

The service is available if more than a fraction S of the requests received by the
server returns a correct response with a latency less than `server after the request
was received measured over a time interval �t.

Since we will focus on the server availability aspects the latter definition will be used.

3.3.6 DBMS server service definition

The previous sections have discussed the standard and failure semantics of a server in
addition to the definition of server availability. They are all part of the service definition of a
server. Table 3.2 lists the set of parameters in the service definition which will be considered
in this work. Response and state transition is the standard semantics of the server. The
maximum load specifies under which conditions the server is operating. Maximum latency,
success rate, and measurement interval specify the conditions for determining whether the
system is available or not.
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Metric Symbol Unit Description

Response The correct response to the request

State transition The state change of the server
caused by the request

Failure semantics Allowed failure behavior

Maximum load C requests
per second

Maximum number requests the
server is able to receive per second

Maximum latency ` seconds The maximum allowed delay from
a request is issued until the re-
sponse is received

Success rate S % Minimum fraction of the requests
to complete successfully according
to the service definition

Measurement interval �t seconds Time interval used to compute suc-
cess rate

Table 3.2: Service definition for a server
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Metric Symbol Value

Response New account balance

State transition Update account, teller and branch records.
Insert history record.

Failure semantics Performance failure and
omission failure

Maximum load C tpcB transactions per second

Maximum latency ` 2 seconds

Success rate S 90 %

Measurement interval �t 15 minutes

Table 3.3: Service definition for a DBMS server based on the TPC-B benchmark.

Table 3.3 shows an example of a service definition based on the TPC-B benchmark ([Gra91]).
The “tpcB” number is the highest value for which the system is considered available.

3.4 Database systems and fault-tolerance

Database systems providing a transaction mechanism are also providing a certain fault-
tolerance functionality. The transaction ACID properties — atomicity, consistency, isolation,
and durability — are concepts making the database system able to handle a large class
failures as for example a computer crash.

Logging and recovery are essential mechanisms employed by DBMS’ to implement trans-
actions. In addition to transactions, logging and recovery can also be used to improve
availability by other means, e.g. on-line production of consistent replicas and keeping
them synchronized. Hvasshovd [Hva92] does an extensive analysis of logging and recov-
ery for very high availability applications.

Replication is another important concept for fault-tolerance and improved availability and
are together with transactions a powerful pair. The rest of this work will focus on how
replication can be used and implemented to achieve an as good as possible availability.

3.5 Causes for DBMS unavailability

There are several sources for service interruption of a DBMS server. A classification of
these is given in figure 3.6. As noted before, unavailability is not necessary coupled to
failures. A failure does not need to cause unavailability, and unavailability can be caused
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System change
DB schema change

Software upgrading
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Hard HW or SW errors

Error detection and diagnostics latency

Backup/snapshot production

DB reorganization/optimalization

Self-repair

Long-lived transactions

Figure 3.6: A classification of sources for unavailability for a DBMS.

by other sources than failures. This classification differs from Grays classification [Gra90]
in that Gray uses the source of the event causing service outage as basis for classification:
software, hardware, maintenance, operations, environment, or process. This classification
on the other hand is based on the phenomena causing the unavailability. As the figure
shows, there are three main classes of unavailability:

ACID preserving, automatic recovery: This class of unavailability is only intermediate
and availability will be automatically be restored after the phenomena that caused
the unavailability has disappeared.

For many commercial database systems system administration (e.g. taking backups,
doing checks, and database reorganization) can not be done when the system is on-
line. Also, most systems can not handle on-line system change like changes to the
database schema, hardware, and system software.

34



Even if a system is resilient to failures, the failure handling can cause some intermediate
unavailability. The service is normally unavailable until the failure is detected and
diagnosed. The processing required for an alternative module to take over the task
from a failed one can also cause unavailability.

The last entry in this class is self-repair which is unavailability caused by the system
during reestablishment of its own service ability. Database recovery after a crash is
the most typical but also replica reproduction and hardware reintegration can cause
service interruption.

ACID preserving, manual repair: This class is characterized by the need for assistance
from an external entity like a human or another computer. Note that the unavail-
ability does not need to be continuous in that the server might alternate between an
available and an unavailable state as long as one phenomena is the cause. An insuf-
ficiently configured computer might be saturated only during busy hours. In these
busy periods the specified service is not provided, but outside them it will be classi-
fied as available. Insufficient computer resources are a non-continuous phenomena.
Physically upgrading the computer is manual repair of the problem.

Conflicting user transactions are a source for unavailability that needs manual interac-
tion to resolve. Section 3.2 described how long-lived OLCP transactions could block
service for OLTP transactions. Live-locks and starvation are related problems. To
solve this either the data model must be modified, the applications changed, or the
DBMS improved (as described in section 3.2).

This class of unavailability is less desirable that the first one. In this case the system
depends on an external entity for providing a specified availability.

ACID violation: This is the worst of the three unavailability classes in that it is outside the
failure semantics of a DBMS and is considered a breach of the safety. In many cases
the failures causing this kind of unavailability are not possible to recover and if they
are, it is very time consuming and requires manual interaction.
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Chapter 4

System platform

This chapter will discuss a machine platform suitable for a highly available DBMS server.
With platform we mean both hardware and lower level software. The software includes
operating system and communication software.

In the previous chapter we looked upon the DBMS server as a single abstract entity. As we
will see in this chapter all the proposed architectures for highly available DBMS servers
consist of multiple components for redundancy and performance. Despite this the server
software can hide the details of distribution from the clients which will observe the server
as a black box just doing its job.

4.1 Hardware

4.1.1 Machine architectures

Stonebraker [Sto86] describes three architectures for parallel database systems: shared-
nothing, shared-disk, and shared-everything. Copeland and Keller [CK89] extend these three
architectures to the six which are illustrated in Figure 4.1. Common for all architectures
are the three types of components — processors, memories, and disks — which are in-
terconnected through local buses and a global communication network. The collection of
components connected with a local bus are called a node. The six architectures are:

Shared-nothing: One processor, one disk, and a local memory are connected together with
a local bus. Multiple of these nodes are interconnected through a communication
network.

Shared-disk: Multiple nodes, each composed of one processor with local memory, are
interconnected through a communication network. Multiple disk units are also
connected to the network so that any processor directly can access any disk.

Shared-memory: Multiple nodes, each composed of one disk and one processor, are in-
terconnected through a communication network. One or more memory modules are
also connected to the network so that any processor directly can access any memory
module.
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Figure 4.1: The six machine architectures for parallel database systems described in [CK89].
P=processor, D=disk, M=memory

Shared-everything: Multiple disk, memory, and processors are individually connected
to a communication network so that any processor can access any disk or memory
module.

Clustered-disk: Same as shared-nothing except that each node can consist of more than
one disk.

Clustered-everything: Same as shared-nothing except that each node can consist of several
processors, disks, and memory modules connected with a local bus. In essence each
node is a shared-everything computer.

Sharing resources means that there is a shorter path to the resource and therefore less delay,
less overhead, and better performance. Thus, from a performance viewpoint shared-
everything is the preferred architecture. For database systems this is confirmed by an
analysis performed by Bhide in [Bhi88]. The sharing property also provides fault-tolerance
by allowing any component to access a resource. If a component fails another component
can immediately take over its task since it has access to the same resources.

Unfortunately, sharing has some obvious flaws that discourage its use. If a failed com-
ponent is allowed to continue to access other components after the failure, it can corrupt
the system state and cause unrecoverable damage to data. A failed process running on
one processor can for example overwrite the address space belonging to another process
running on another processor.

The behavior of failed components can also block good components from accessing a
resource. A failed processor can for example jam a bus shared by several processors.
One approach is to build the components with a fast-fail property and make it possible
to isolate them from the interconnection network when they have failed. For hardware
this has proven successful (e.g. Stratus [Fre82]) but for software there are mixed results.
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Rigorousn-version programming approaches [Avi85] handle some faults but are still prone
to faults caused by design-failures.

Sharing memory between multiple processors also suffers from bad scalability, a high
interconnect cost, and complicated data-structure management. Memory sharing requires
a low communication latency and a high bandwidth that up to now only have been
available using bus solutions. These buses limit the maximum distance between the
components and have an upper limit on the number of components that effectively can
access it. New approaches based on cache coherence protocols like Scalable Coherent Interface
(SCI) [JLGS90] are meant to overcome the scalability problem but do not solve the fault-
tolerance issues. Processes sharing memory still can corrupt the data contents for each
other. A problem that is difficult to solve is the management of concurrent accesses to
shared data.

The shared-nothing, clustered-disks and clustered-everything architectures are much less
prone to these problems. The performance requirements for the interconnect are less
strict and allows much larger configurations and distribution further apart. It is also
much easier to isolate failed components and implement hot-replacement modules. The
communication between nodes is based on message passing or remote procedure calls
(RPCs). Inside a node a failed component can still corrupt the other components but it is
most likely to be limited to that node only. When a component fails all components on
that node can be suspected to be contaminated and the whole node be considered to have
failed.

A sharing domain is the collection of processors, disks and memories where all components
directly can access each other. For the shared-nothing, clustered-disk, and clustered-
everything architectures each node is a sharing domain. For shared-everything the full
system is a sharing domain.

Since a component fault is a threat against the other component in the same sharing
domain it is a conservative approach to consider all the components in the sharing domain
to have failed. In the rest of this thesis we will assume this conservative approach and
consider the sharing domain to be the unit of failure. Obviously, we do not want the
full system to always fail when a single component fails. This rules out the shared-
everything/memory/disk architectures and we are left with shared-nothing, clustered-
disks and clustered-everything. These three will be treated identically in the reminding
work and shared-nothing will be used as the group term. The number of processors, disks,
and memories in each node is a question of balance between different types of resources
and the granularity of the system. Coarser granularity means that a failure will knock out
a larger fraction of the system with the consequential reduced performance and service
degradation.

In addition to node failures we can also expect failures in the communication interconnect.
A full interconnect failure will result in that no nodes can communicate and the system
must be considered down. Partial failures can isolate some nodes but still offer the con-
nectivity necessary for the system to provide service. In the best case no nodes loose their
ability to communicate and only a reduction in bandwidth is seen. Bus systems and other
shared media interconnects (e.g. Ethernet) are prone to full failures. Fault-tolerant archi-
tectures based on buses get around this by using replicated buses (e.g. Tandem’s NonStop
architecture [Kat78] and Stratus [Fre82]). Full failures can in most cases be avoided using
switched interconnects.
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A large number of comparative studies have been written on existing fault-tolerant systems
and database machines. See [Kim84, Ser84, Cua89, Sie90] for surveys of fault-tolerant
systems and [Su88] for a extensive overview over database machines.

The current dominating architecture for commercial large-scale database machines seems
to be shared-nothing. Both commercial systems like Teradata DBC/1012 [Ter85] and ICL
Goldrush [ICL93], and research systems like GAMMA [DGS+90], and HC16/386 [BG89]
are examples on such systems. Even though both Teradata and ICL computers have built-
in fault-tolerance mechanisms, they are not sold as general fault-tolerance computers. The
most successful vendor in this respect is Tandem with their NonStop architecture [Kat78],
which mainly is a shared-nothing architecture, but allows two nodes to share the same
disks. Among the fault-tolerant systems based on a shared-everything architecture are
Stratus [Fre82] and IBM mainframes [Sie92].

4.1.2 Site failures

In this chapter we have classified failures as either node failures or interconnect failures. By
assuming fail-fast nodes we know that no node-internal fault will spread to other nodes,
thus only one node can fail caused by a single node-internal fault.

An external fault can cause more than one node to fail at the same time. Let us define site
as the set of nodes and the part of the interconnect located on the same physical location so
that they can collectively fail as the result of a single event. Such an event can be a disaster
like a fire or earthquake, a power failure or a human mistake. A site failure is a failure
causing all or a major part of a site to fail.

The disadvantage with most (if not all) existing computer systems is that they only offer
fault-tolerance inside a single computer room or very closely located buildings. Robustness
against a site failure is achieved by replicating the full system on a remote site. This adds
to the redundancy already used to implement local fault-tolerance inside the site.

This restriction has been caused by expensive and slow Wide-Area Network (WAN) tech-
nology. But the arrival of fast and cheap1 technology based on optical fibers and cell
switching opens up for new solutions. For high-availability database systems this has
been suggested both by [SS90, Hva92]. The next section will describe how a system can be
achieved with fairly straight-forward workstation class hardware and commercially avail-
able interconnect hardware. This avoids the need for specially designed (and therefore
expensive) hardware components, something which has been common for fault-tolerant
systems up to now.

4.1.3 Workstation clusters for database systems

Workstation clusters is an architecture that recently has been introduced by the major com-
puter vendors like IBM and Sun. This is a shared-nothing architecture where conventional
workstations are the nodes. A high capacity network, e.g. FDDI or ATM, interconnects the
nodes [Par93].

Since workstations are general computers there should be no reasons against using a work-

1Read: less expensive.
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Figure 4.2: A single-site, single-connected (SS) database cluster.

station cluster for database applications as long as the communication network provides
sufficient capacity, but for use in fault-tolerant computing there are some points that may
cause concern.

Let us call a cluster solution for database processing a database cluster. For the system to
be scalable with respect to the number of nodes the communication network must be able
to handle the communication from a wide node count range. Shared medium solutions
like Ethernet, Token Ring and FDDI have an upper limit on the aggregate communica-
tion bandwidth that prohibits their use in large systems. Asynchronous Transfer Mode
(ATM) (see Section 4.1.5) and frame-relay architectures on the other hand are based on
switching and do not have the bottleneck inherent in the shared medias. Our model of a
database cluster therefore becomes a set of nodes connected to a communication switch
with communication lines. The WAN capability of ATM also allows for multiple sites and
the possibility to mask site failures.

Since a communication solution using ATM consists of two distinct components — switches
and communication lines — there are four types of failures in such a database cluster that
should be masked: node, communication line, switch and site failures. Below follows the
descriptions of four different configurations and how they handle the four failure types.

Single-site, single-connected (SS)

Figure 4.2 shows a database cluster located on a single site which has a single network
connection for each node. The configuration is robust against node failures but will not be
able to handle neither a site nor a switch failure. Communication channel failures can not
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Figure 4.3: A single-site, double-connected (SD) database cluster.

be distinguished from node failures and must therefore be handled as a node failure. Node
failures are handled by replicating data over multiple nodes and migrating processes after
a failure.

Single-site, double-connected (SD)

A double-connected cluster (Figure 4.3) differs from a single-connected cluster by having
two network connections on each node where each is attached to independent switches.
The switches are also connected together with one or more communication lines to ensure
full connectivity when multiple communication lines have failed. The redundant switch
allows SD to mask a switch failure. An additional advantage is that communication line
failures can be masked without treating the connected node as down. As for SS, SD can
not mask site failures.

Compared with SS the additional cost is a fully replicated communication network.

Dual-site, single-connected (DS)

A dual-site cluster (Figure 4.4) is built by taking two single site systems and connecting
the switches at the two sites with at least one communication line. This configuration is
able to handle both node, communication line, switch and site failures as long as there are
at least one replica of all data stored on each site. A switch failure will be observed as a
site failure by the other site. The nodes connected to the failed switch will observe this
identical to a intra-site communication line failure. If all inter-site communication lines fail
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Figure 4.4: A dual-site, single-connected (DS) database cluster.

both sites will assume that the other site has failed. To avoid inconsistencies when the sites
are re-connected only one of the sites should be allowed to provide full database service
during the interruption.

Note that DS configuration also can be used inside a single site reducing the number of
necessary connections to nearly the half compared with the SD. The disadvantage is a
restriction on how the data is replicated over the nodes.

Dual-site, double-connected (DD)

A dual-site double-connected database cluster (see Figure 4.5) combines SD and DS. It
handles both node, line, switch, and site failures without making more than the failed unit
unavailable. For both SS and DS a switch failure meant that all the nodes on that site became
unavailable. The disadvantage is the higher cost caused by replicating communication lines
and switches.

Table 4.1 shows a summary of how the various types of failure are observed for the four
alternative configurations.

Note that both DS and DD can be extended to more than two sites for increased redundancy.

4.1.4 Client communication

Up to now in this chapter the communication with the client computers has been ignored.
There are two options:
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Figure 4.5: A dual-site, double-connected (DD) database cluster.

Failure

Node Switch Line Site

SS N A N A

SD N X L A

DS N S N S

DD N X L S

N=node unavailable
X=switch unavailable
L=communication line unavailable
S=site unavailable

A=system unavailable

Table 4.1: Comparison of failure consequences for four database cluster configurations.
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� Some or all nodes have communication interfaces which connect the node to one or
more client communication networks. When a client issues a request, the request is
received by a node which processes the request itself or forwards it to another node.

� The client network is directly connected to the server interconnect, i.e. a switch.
Requests are received by the switch and routed to a destination node.

For fault-tolerant client communication the client network should be redundant and con-
nected to a node or switch at both sites. In the case of a site failure the client can then
connect to the other site for service.

4.1.5 Hardware components

A prerequisite for masking an error is to be able to detect it before it becomes visible. It is
important not to let a fault changing the state of the system pass undetected. The fail-fast
property of the components is the essential mechanism to achieve this but is it reasonable
to assume this for the suggested hardware?

Most workstations consist of a CPU-board integrating processor, I/O controllers, and
memory. In addition there are one or more disks, a floppy drive, display, keyboard,
mouse, power supply, and some cabling. The floppy drive, display, keyboard, and mouse
is of no use and will not be considered. The cabling are much more reliable than the other
components and will be ignored as a source for faults.

CPU-board

The CPU board of a modern workstation consists of a processor (CPU), memory, and
I/O controllers. Memory is the component most prone to errors. Most workstations
are therefore equipped with parity or error-correcting codes (ECC). Parity can only detect
single-bit errors in a machine word but this is sufficient for being fail-fast in most cases.
The ECC used by most computer systems corrects all one-bit errors and detects all two-bit
errors. The detection capability means that a larger class of errors are caught.

To detect CPU failures two CPUs can be run in lock-step with one supervising the other. If
one of the processors fail the discrepancy between the output of the two CPUs is detected
and the system is reset. Several high-performance microprocessors offer this functionality
and when used will provide fail-fast operation. Unfortunately this is not used in normal
workstations and the fail-fast assumption is questionable.

Disks

Originally hard-disk drives with their mechanics were among the less robust parts of a
computer, but in recent years this has changed. Modern 3.5” hard-disks with 500,000 hours
projected MTTF are common and IBM has announced the 0662 drive family in the 800,000
hour range, i.e. more than 90 years. Note that this MTTF figures must not be confused
with the drives lifetime. The MTTF figure gives the failure rate during the lifetime of the
system.
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In real life disks fail more often than the lifetime and MTTF figures indicate since they
expresses failures of the full drive. More often the drive is not able to retrieve one or more
written sectors. This can for example be caused by wear of the magnetic coating on the
platters, bad spots on the platter or temperature changes causing change in the dimensions.

A disk drive has embedded some fault-tolerance mechanisms to handle most of those
failures. The data is stored on the disk with an error correcting checksum and most errors
are masked with it. If the error can not be corrected the disk automatically retries to read
the disk a few times before giving up and flags the error to the operating system. The
Fujitsu M2622 data-sheet [Fuj91] specifies that every 1010 bit read from the disk is a read
error that can be detected and corrected by the disk. Only once in 10 15 bits an error is passed
undetected to the user. Detected but unrecoverable errors are forwarded to software layers
which must handle them. The data must be recovered if possible and the damaged disk
sectors isolated from further use. With this low error rate it is reasonable to believe that
disks are fail-fast.

Communication

A promising standard for communication between the nodes is Asynchronous Transfer
Mode (ATM) [Par93]. It is a communication standard initially designed for telecommuni-
cation applications that have evolved into computer communication use. It allows a wide
range of bandwidths and can be used to build large networks. Today it exists workstation
adapter cards supporting 155 Mbits/s bi-directionally between the workstation and the
network through either optical fiber or twisted pair copper wire. Optical fiber has very
low error rates and will electrically isolate the workstation from the network and the other
components in the network.

The most important components in an ATM network are the switches. Through communi-
cation lines a switch can be connected to either nodes with adapter cards or other switches.
Communication between two nodes is achieved by establishing a virtual circuit from the
source node through a set of intermediate switches to the destination node.

The simple and general nature of ATM allows fast and efficient switching of messages and
is suitable for use in both LAN and WAN applications. The LAN capability is good for
intra-site communication and the WAN capability is necessary for communication between
sites. The standardized interface makes it possible to also connect the client computers to
the database cluster through the ATM interconnect.

In addition to permanent switch and communication link failures, ATM is also allowed to
drop messages. This message loss can be caused by a transient congestion in the network
or noise. Software protocols must recover this message loss.

Traditional communication techniques using checksums, sequence numbers, acknowledge
messages, and timeouts guarantee that communication failures do not pass unnoticed and
violate the fail-fast property.

Power supply and cooling

Up to now we have not discussed power supply and cooling of the equipment. In the case
of workstation nodes we have a Power Supply Unit (PSU) for each node. If a PSU fails,
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the node fails and the failure is handled like a node failure. A power outage will seldom
happen on two sites at the same time if the sites are sufficiently far apart and will therefore
stop the operation of one site only. If the site is equipped with an Uninterruptible Power
Supply (UPS) with batteries supplying the power if the primary feed is lost, the number
of site failures can be reduced. Unfortunately introducing an UPS also introduces another
component that can fail.

Electrical components are specified to operate inside a limited temperature range, and if
this range is exceeded, the components will probably fail. To ensure correct operation of a
computer, the generated heat must be transported away. For a desk-top system in a normal
office environment this is handled by the system itself. If the environment temperature
is too high, artificial cooling must be provided. Since reducing the temperature to below
room temperature also will increase component life and reduce the failure rate, cooling
might be considered just for increasing availability.

Traditional air cooling equipment for computer rooms should be sufficient for cooling a
database cluster site. The outcome of a cooling equipment breakdown is uncertain. None,
some, or all nodes on the site might fail before repair has taken place. It depends on how
much the temperature rises and the length of the exposure. Redundant cooling equipment
will reduce the probability of such a site failure.

4.1.6 Node restart

A frequent failure mode is that a node is unable to communicate with the other nodes in
the system. This can happen if the node is deadlocked (either in software or hardware),
or the operating system or communication has crashed or entered an odd state. Even
though parts of the node still are operating the rest of the system observes that the node is
unreachable. Since it is not possible to communicate with the node, it is also impossible to
tell the node to restart itself so that the failure can be corrected. Two possible solutions to
this problem are:

Reset through the communication network: The communication network must provide
a mechanism which allows some nodes to reset other nodes independent of the
state of the node to reset. This can be done by special reset lines or subchannels in
the communication network. To avoid failed nodes accidentally resetting correctly
operating nodes, at least two nodes should be required to initialize a reset.

I-am-alive messages and watchdog timers. With regular intervals (e.g. each second) the
nodes should send I-am-alive messages to each other (which in any case is necessary
for detecting failed nodes). Each time a node receives such a message, it resets
a watchdog timer. If the timer is allowed to reach a given value (e.g. two seconds)
without being reset, the timer physically restarts the whole node, including hardware
and operating system. The watchdog timer itself is a simple timer circuit independent
of the rest of the node hardware.

Of the two strategies the second seem to be the simplest for a workstation cluster. Since no
commercial communication solutions provides the necessary reset capability. Watchdog
timers on the other hand are frequently offered on CPU boards.
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4.2 Operating system

The operating system provides the programmer access to the hardware resources, but also
restricts accesses which will threaten the system integrity. It is also responsible for allocation
and sharing of resources between different users and program executions. The access to
the resources is through an abstract interface hiding the actual hardware implementation
for the programmer. This interface also eases the portability of application code since the
underlying hardware can change without changing the interface. Randell [Ran75] calls
this an abstract machine (or a virtual machine).

An abstract machine defines the facilities available for the user like memory segments, disk
storage and text I/O. From a fault-tolerance viewpoint it is important to know their failure
semantics.

An abstract machine should not be defined by random. It is important that it is possible to
implement the abstract machine on the anticipated target platforms, and even if a facility
is implementable, it must be efficient, i.e. there must be low impedance mismatch between
the abstract machine facility and the underlying hardware. The abstract machine must also
provide the facilities required by the application programs. For the suggested database
cluster architecture this includes communication and disk access primitives.

Some work has been done on operating system kernels and abstract machines for database
machines and fault-tolerant systems. Wilkinson and Boral [WB87] describes the KEV
kernel designed for the Bubba parallel database computer. Borg et al [BBG+89] describes
a fault-tolerant operating system with a UNIX personality. The system is implemented
through process pairs, checkpointing and use of memory management hardware. The
idea was to offer fault-tolerance for existing software without any modifications needed.
The problem is that even if OS and HW faults can be masked, it is not able to detect and
correct software errors in the application.

The approach taken by the Tandem NonStop kernel [Bar78] is not to hide the fault-tolerance
facilities from the application programmer, but instead provide it to his or hers direct
control. The mechanisms provided are process pairs, messages and checkpointing.

For a further discussion on abstract machines for a high-availability database server we
refer to the article reproduced in Appendix C.
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Chapter 5

Data availability strategies

There are four types of resources for a DBMS server that require redundancy to ensure
high availability to the DBMS service: information, processing capacity, storage capacity,
and access ports.

Information includes the database contents, the database schema, and log and recovery
information. The ACID properties of the database system demands durability, i.e. no
loss of information stored or updated by committed transactions. Redundancy through
replication provides an implement to overcome inevitable hardware errors.

Sufficient processing capacity must be available to handle the database workload that the
DBMS server is specified to handle. In case of a hard error affecting processing capacity
there must be sufficient redundant hardware resources to replace the lost capacity.

Sufficient storage capacity must be available to handle the database volume the server is
specified to handle, also in the case of a hard error.

The DBMS server must provide enough access ports (communication channels) into the
server so the clients can issue the required transaction load even in the case of a hard error.

This chapter will discuss strategies for maintaining the information available, even in case
of an error, provided that there are enough redundancy for the other resources: processing,
storage and access ports.

5.1 General aspects

The shared-disk and shared-everything architectures described in Section 4.1.1 allow any
processor to directly access any tuple or disk page in the system. This is not possible for
the other architectures listed (e.g. shared-nothing) and an intermediate processor has to be
requested for the relevant data. The penalty for a remote access compared with a local one
is the additional delay and an extra load on the communication network. The volume of
remote accesses affects the capacity of the network and therefore also the cost of it. If the
data accessed resides in primary memory the remote access delay is several magnitudes
larger than local access. Table 5.1 shows typical latency and bandwidth numbers for disk
and memory compared with those for node requests. The remote node accesses do not
include disk access latency which eventually must be added. Reading the table from a
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Access type Latency Bandwidth

�s MB/s

Local memory 0.1 100

Local disk 15,000 5

Intra-site node (<1 km) 1,000 10

Inter-site node (1,000 km) 10,000 10

Table 5.1: Typical latency and bandwidth for memory, disk, and remote node accesses. Latency
figures are for 100 byte accesses.

performance viewpoint the following observations can be made:

� Local disk access latency is lower than for remote disk accesses, but with less than a
factor two.

� Local memory accesses are much faster than remote memory accesses.

� Remote memory accesses are faster than local disk accesses!

� The bandwidth penalty is less than the latency penalty. A few larger remote accesses
are preferred over many small.

From these observations we see that the placement of the data should be carefully consid-
ered so that the hardware resources are utilized as best as possible. We also know that data
replicas must have independent failure modes and this sets a restriction on the placement
of the data.

Declustering strategy1 is the generic term we will use for a data placement strategy. Declus-
tering has two aspects:

Distribution: How to spread the database content over the nodes.

Replication: How to maintain multiple copies of the database content placed on different
nodes.

Declustering was in [Liv87] originally used as a term for distribution of subsets of tuples
over many disks but has in the past years also included replication.

A declustering strategy should ensure:

� Balanced load distribution over the nodes.

� Balanced storage requirements for the nodes.

1Clustering = locate together, Declustering = locate apart.
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� Efficient use of the hardware resources.

� Maximum system availability.

� Scalability over a wide range for the following parameters: transaction load, database
size, number of clients, and availability.

5.1.1 Information entities

An Information Entity (IE) is an atomic unit of information either grouped logically or
physically.

Physical IEs Logical IEs

� disk page � tuple

� disk � fragment

� node � relation

� site � file

� system � database

The physical IEs hold the information stored on a hardware entity like a disk or a node
while the logical IEs are the abstract units of information the software presents to the user.

IEs are the basis for both replication and distribution. Unit of replication and unit of distri-
bution denotes the IE granularity used for respectively replication and distribution.

A unit of failure is an IE where the different instances of the IE have independent failure
modes. In our DB cluster architecture sites are the unit of failure with respect to site and
some communication failures. Nodes are the unit of failure with respect to disk, memory,
processor and the rest of the communication failures.

5.2 Replication

Replication is the task of producing and maintaining multiple logically identical copies of
information units. Such a copy is called a replica. If one of the replicas is changed, all
the replicas should atomically be changed to ensure ACID properties. If X is the unit of
replication then an X replica is an instance of the replicated IE.

The reason for replication is threefold. First, it improves data availability by providing
alternative sources for data if one replica is lost through replica corruption or failure of
the access mechanisms. Second, it provides multiple access paths to data increasing the
available access capacity. Third, by distributing replicas communication can be reduced
through accessing the closest replica, which in the best case can be a local replica.

Unfortunately, there are also drawbacks with replication. Updating multiple replicas gives
serious performance penalties and the additional hardware resources required to store and
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process the multiple replicas increase system cost and aggregated component failure rate.
Creating two replicas of data requires twice the storage capacity, i.e. twice the number of
disks. Even though replication can reduce the system failure rate by masking disk errors,
each individual disk will fail with the same intensity giving twice the number of disk
failures over a given time interval.

From the replication point of view the unit of replication is atomic and can not be partially
available. If one part of the IE fails, the complete IE is considered to have failed. Take for
example disk replication. The content of a disk is replicated over multiple disks, each called a
disk replica. If a block on one of the disk replicas is corrupted and the corruption is detected,
the whole disk replica is considered corrupt and therefore unavailable. Replication can
also be applied to more that one IE granularity at the same time, e.g. by using both site
replication and disk replication (see Section 5.6).

Each replica of an IE must be externally equivalent and contain the same amount of
information. This includes explicit information like the data content itself and implicit
information like data sequence, relative data address, and other relationships between
data items.

A single failure can cause multiple replicas to become unavailable, e.g. a disk failure might
cause multiple disk pages to be lost. For fault-tolerance reasons replicas of the same
unit of information should have independent failure modes, i.e. not be stored in such a
way that one failure will cause the loss of more than one replica. Assuming node failure
granularity, storing replicas of the same information unit on different nodes is sufficient
for fault-tolerance. For site failure granularity replicas must be located on different sites.

The replicas are either maintained symmetric or asymmetric:

Symmetric replication treat all replicas identically without giving any replicas special
roles. A read operation can access any replica and write operations have to directly
update all replicas.

Asymmetric replication give one of the replicas a special role as a primary replica. All
operations (both read and write) are directed towards the primary replica and serial-
ized there. The other replicas are called hot stand-by replicas. When write operations
succeed on the primary they can be forwarded to the hot stand-bys and re-done there.
There are no need for concurrency control mechanisms on the hot stand-bys, since
the operations already have been serialized on the primary.

Symmetric replication is simple and gives a high level of concurrency for read operations.
Since we can choose which replica to read locality can be utilized to reduce communication
latency and bandwidth. Write operations are more expensive and suffer from potential
high conflict rates on hot-spot data. Asymmetric replication is less resource demanding
for write operations but provides less concurrency for reads.

In the case of a hard failure all replicas residing on the unit of failure areis considered
unavailable (permanently or temporarily). For symmetric replication, read operations
must only be directed towards available replicas. Write operations will just ignore the
unavailable replica and update the remaining replicas as normal. If it is a temporary
unavailability the update can be queued for deferred update when the unavailable replica
becomes available again.
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In the case of asymmetric replication this is a bit more complicated. If a hot stand-by replica
fails, the replica is just ignored. If the primary replica fails, a new primary must be elected
and all read and write operations directed to this instead. The process of changing primary
is called replica takeover or only takeover.

To directly access an IE instance X the logical address kX of the instance must be known.
This address is mapped to a physical address aX by the DBMS. If replication is used, the
address should not map to only one of the replicas, but to the set of all available replicas.
For asymmetric replication the mapping should also denote which replica is the current
primary. For relational databases the logical address kX can be the primary key of a tuple
and the physical address aX the tuple (node number, disk number, page number).

5.2.1 Location of declustering

One of the decisions that must be taken during the design of a parallel DBMS is where
the distribution and replication should be handled. Modern design guidelines favor im-
plementing functionality in smaller, more manageable modules over monolithic designs.
Figure 5.1 shows a simplified and generalized layered design of a DBMS. The application
issues requests to the logical DB processor (LDP). The LDP is a collection of components
which includes transaction coordinators and execution plan compilers. The LDP converts
a high-level request (e.g. an SQL command) into a form the DBMS kernel can handle. The
kernel uses the access method to retrieve, update, insert, or delete records from database files.
The storage server provides the access method with the disk pages it needs. The storage
server requests raw disk I/O transfers from the device driver. The hatched horizontal line
illustrates the border between logical (above) and physical IEs (below). Above the line the
IEs are databases, relations, tuples, and attributes. Below it can sites, nodes, disks, and
disk pages be found. The left side of the figure shows examples on where various systems
implements replication and distribution. Not all of them are DBMSs: Tuxedo [MAC92] is
a TP monitor which can handle replication and distribution on top of a DBMS. Mirroring
and RAID are typical operating system or disk controller features which can be used by
DBMSs.

5.3 Physical declustering

A physical disk address consists of the tuple (cylinder number, head number, sector number).
Knowledge of the physical layout of the disk and its access characteristics is valuable for
the DBMS for optimizing disk usage. Layers between the disk and the DBMS, like disk
controllers and the operating system device drivers, try to hide this information from
programmers by only providing an abstracted linear address space of disk blocks. There
also exists a mismatch between the size of the physical sectors on the disk surface, the
sector size presented by the disk controller, the block size used by the operating system
and device drivers, and the logical page size managed by the DBMS. For the purpose of
the discussion on distribution and replication this is not important and the mismatch will
be ignored. For our discussion it is sufficient to view the disk as a collection of pages
with a size matching the page size used by the DBMS. Since the page is the minimum
granularity of transfers between disk and primary memory, byte and word granularity are
of little interest and will not be considered here.
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Figure 5.1: Data distribution and replication location.

The reasons for using distribution and replication on a physical level are both performance
and reliability. Replicating pages on two independent disks double the number of disk
arms being able to read data and thereby increasing the number of disk reads per time
unit. The penalty is that new and updated pages have to be written on both locations
(mirroring/shadowing [BG88]).

The read and write throughput of a disk is limited. Distributing a relation over multiple
disks provides the opportunity to transfer data in parallel between the processor and the
disk and thereby increasing the overall node-internal disk throughput (striping [SGM86]).
This argument can be used to advocate for many small disks over a single large, but from
a reliability viewpoint this is bad. The reliability of a disk drive does not depend on
the storage capacity of the drive but can instead be considered constant. If reliability is
important few and large disks should be used.

RAID (Redundant Array of Inexpensive Disks, [PGK88]) is a family of physical, page level,
declustering mechanisms. RAID level 0 offers distribution only, RAID level 1 redundancy
only and RAID levels 2 through 5 both distribution and redundancy. The redundancy is
either through replication (RAID level 1) or parity (RAID level 2 through 5). Even though
redundancy through parity can not be called replication, the reader can consider it as a
logical replication scheme. Data reconstructed from other data and parity disks form a
logical replica. Section 6.2.1 describes RAID in more detail.

Based on Figure 5.1 we see that physical declustering must be located in either the disk
controller (DC), the device driver (DD), or the storage server (SS) (illustrated in Figure
5.2). Seen from the layers above, the DD and DC can hide physical data distribution
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Figure 5.2: Alternatives for implementing physical distribution and replication. (a) in the disk
controller, (b) in the device driver, and (c) in the storage server

and replication. The layer above only sees a single, large disk and details on concurrent
accesses, error masking, and sparing are hidden. Based on plain single-ported disks
and disk controllers, the DC and DD are restricted to distribution and replication over
multiple disks on a single node only. Multi-ported disks and disk controllers (e.g. [Kat78])
allow distribution and replication over a few (two) nodes, but they can not be considered
commodity hardware and the functionality can be emulated in the SS layer (but with some
performance penalty). The DC and DD provides no mechanisms to synchronize concurrent
accesses to disk pages and should therefore only be accessed by a single entity in the layers
above.

The SS, on the other hand, provides inter-node access to disk pages. The access method
manager (AM) requests the local SS for disk page reads and writes. If the page is non-
local the SS request the SS having access to the page to complete the operation. Some
architectures allow multiple AMs to request the same page and let the SS handle the
concurrency control.2 The SS can also handle caching of remote pages. In short, the SS can
provide a virtual shared-disk architecture.

Since the DC and DD solution only can mask disk drive and/or disk controller failures,
they are not sufficient for handling node failures and therefore of no use in a system with
a node failure granularity. On the other hand, it should be pointed out that they can be
combined with any other mechanism to yet increase reliability and in some cases also the
performance. Placing the distribution in the DC or DD can potentially degrade the DBMS
performance, since the higher layers of the DBMS know more about the access pattern to
the data than the DC and DD and can potentially do more optimalizations.

The DC is normally considered to be hardware and the DD a component in the operating
system. This means that neither of them in fact are parts of the DBMS and should therefore
not be required to be specially made for the DBMS. Using standard DC and DD components
improves portability.

Physical declustering does not have any knowledge about the data being stored and can
therefore not distinguish between data that must be replicated and data that not necessarily

2This concurrency control does not have to be the sole concurrency control mechanism for the DBMS. To the
contrary, the page granularity is coarse and can serious affect the performance for transaction systems exposed
to hot-spots.
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need to be replicated, e.g. temporary files.

Based on this analysis physical declustering will be evaluated based on the assumption
that it is located to the SS.

5.4 Logical declustering

In the relational model the IEs are attributes, tuples, relations, and databases. Distributing
the data over the nodes based only on locating whole relations or databases to nodes is not
sufficient. The relations vary in size and some relations are accessed more often than others,
and thus violating the requirement for even load and storage capacity distribution. The
solution must therefore be to divide the relations into smaller sub-units, called fragments,
either based on tuples (horizontal fragmentation), attributes (vertical fragmentation), or both
(mixed fragmentation). Since vertical fragmentation is of little interest for load distribution
(relations with few attributes can only be divided in few fragments), we will consider
horizontal fragmentation only.

A horizontally fragmented relation R is divided into n fragments F i, one for each node
the relation should be distributed over. A tuple t in R is a member of one and only one
fragment Fi.

R = F1 [ F2 [ � � � [ Fn

Fi \ Fj = ;; for 1 � i < j � n

The cardinality should approximately be the same for all the fragments for storage capacity
balancing. With ideal distribution of access to the data this will also give load balancing.
Copeland et al [CABK88] suggest using the usage intensity (“heat”) of the data to determine
the size of the relations so that each fragment gets the same usage frequency, i.e. the same
load.

In the relational model each relation has a primary key (PK) which is a non-empty sub-set
of the relation’s attributes. The primary key uniquely identifies a tuple in the relation.
The partitioning key (FK) is a similarly defined key used to partition the relation into non-
intersecting fragments. A partitioning function is applied to a tuple’s FK returning the
fragment (or fragments) the tuple belongs to. FK will in most cases be identical to PK or a
subset of it. The Gamma database machine [DGS+90] provides three methods to partition
the tuples among the fragments:

Range partitioning: The partitioning key domain is divided into n ranges and a fragment
is assigned to each range (assuming that the domain has an ordering). A tuple
belongs to the fragment with the assigned range which the tuple’s partitioning key
value falls into. The ranges can be defined by splitting the domain into equal sized
value ranges or by manually providing the range limits.

Hash partitioning: A hash function h(FK) returning values in the range [1; n] is applied
to the partitioning key value. The returned value determines which fragment the
tuple belongs to.
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. . . .

Fragment

Disk pages

Global indices

Local indices

...... ...

Figure 5.3: A two level index hierarchy.

Round-robin partitioning: Tuples are inserted into the fragments in a round-robin scheme
without using a partitioning key.

With the range and hash partitioning schemes it is possible to directly locate the fragment
a tuple is stored in if the partitioning key value is known. If the value is unknown or if
round-robin partitioning has been used all fragments must be probed to locate the tuple.

The selection of which partitioning scheme that should be chosen depends on the nature of
the data (key value distribution, tuple size, relation size) and access patterns (single tuple
or range queries, access frequency, access distribution, hot-spots). It should therefore be
possible to chose partitioning strategy when a relation is created and later change it if the
nature of the data changes.

A more general view of partitioning is taken by [CK89] which defines two levels of indexing.
A global index3 is used to locate the home fragment of a tuple and a local index directs to the
correct disk page inside the fragment (see Figure 5.3). The global index can be maintained
centralized by assigning it to a single node. All transactions accessing the relation have to go
through this centralized resource which is a potential bottleneck limiting the concurrency
and transaction rate scalability. Replicating the global index over some or all the nodes
removes this potential bottleneck but at the same time introduces a consistency problem.
Solutions to the consistency problem is either to keep the global index static over the lifetime
of the relation or to allow discrepancies which is automatically detected and corrected.

Linear Hashing* (LH*) is such a global index [LNS93] based on Linear Hashing [Lit80].
Each node has an approximate knowledge of the current bucket allocation and sends
requests to other nodes based on this knowledge. If the request reaches the wrong node,
the request is forwarded based on the knowledge of the intermediate node. LH* guarantees
that the correct target node will be reached after maximum two intermediate nodes. When
the request has been processed by the target node the reply is returned to the requester
together with information that can be used to update the bucket allocation information

3This should have read global access method since it also is possible to use access methods not using indices,
e.g. hashing. We will remain faithful to the source and use the original term.
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on that node. This means that the replicas of the global index do not need to be strictly
synchronized but are instead updated lazy at the cost of sometimes having to forward
requests. A similar scheme can also be developed for a range partitioning scheme.

The local index only exists in one replica and can be clustered with the corresponding
fragment data. The global index will be an index on FK while the local index is on PK .
Both the local and the global index can be traditional index methods like B-trees or hashing
but do not need to be identical. If the local and global index is identical they can be
combined into a single index structure [CK89].

To generalize the two level index model for round-robin partitioning of tuples, the global
index can qualify multiple fragments for tuple locations.

Usually an index structure will have to be updated for dynamic data. The global index can
be classified as either:

Static The global index is built when the relation is created and kept unchanged over the
lifetime of the relation.

Semistatic The global index can be changed through a database schema change operation,
either manually (by the DBA) or automatic tuning operations. The will probably
cause many tuples to move to new fragments.

Dynamic A global index change can be caused by ordinary database operations. The
change should only cause few tuples to move to avoid delaying the transaction
trigging the operation.

There are schemes that do not map onto the two level index model. Aske in [Ask89]
describes a distributed, clustered B-tree index with multiple roots and fully distribution of
both internal and leaf tree nodes.

5.4.1 Application level declustering

A logical declustering mechanism can be located to either the application, logical DB pro-
cessor or the DBMS kernel (see Figure 5.1). Handling declustering in the application layer
means that the application is alone responsible for sending database requests to the correct
nodes handling the data in question and ensuring distributed transaction consistency. To
be able to do this the application must know the partitioning information. Application
level declustering is outside the scope of this work and will not be considered further here.

5.4.2 Logical DB processor based declustering

The logical DB processor receives database requests from the application. The requests are
analyzed and converted into a form the layer below understands. The conversion done
by the logical DB processor includes query rewriting, optimalization, and compilation of a
high level query language as SQL into intermediate code or executable machine code. It is
also possible to envision multiple logical DB processor layers on top of each other, e.g. the
application uses a transaction monitor which again accesses an SQL compiler.
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The table TABLE1 is range partitioned as:
Key range Table-Node
[0; 100 > TABLE1-0
[100; 200 > TABLE1-1
[200; 300 > TABLE1-2
[300; 400 > TABLE1-3
[400; 500 > TABLE1-4

Key range Table-Node
[500; 600 > TABLE1-5
[600; 700 > TABLE1-6
[700; 800 > TABLE1-7
[800; 900 > TABLE1-8
[900; 1000 > TABLE1-9

The query:

SELECT *
FROM TABLE1
WHERE K>=120 AND K<340;

is rewritten into the following three queries:

SELECT * SELECT * SELECT *
FROM TABLE1-1 FROM TABLE1-2 FROM TABLE1-3
THERE K>=120 AND K<200; WHERE K>=200 AND K<300; WHERE K>=300 AND K<340;

which then can be simplified to:

SELECT * SELECT * SELECT *
FROM TABLE1-1 FROM TABLE1-2; FROM TABLE1-3
WHERE K>=120; WHERE K<340;

Figure 5.4: Rewriting a query into subqueries on a range partitioned table.
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If the logical DB processor does the declustering it also decides which node(s) will handle
the query and sends the converted request to the DB kernel at that(those) node(s). With
the partitioning information it is able to rewrite a single SQL query into multiple queries.
If range partitioning has been used and a sequential scan is issued for a limited range,
one query is generated for each node with tuples inside the query range (see Figure 5.4).
Replicas are handled by generating the same update queries to all replicas of the data
item to be updated. Faults are masked by changing the rewriting rules which reflects the
available replicas. Dynamic load balancing can be achieved by directing read queries to
the fragment replica located on the node with lowest load.

While the application definitively is no good location for handling declustering, the logical
DB processor is much better suited. To allow standard DB transaction semantics, the logical
DB processor must handle global concurrency control and a distributed commit protocol.
The lower levels do not need to know anything about distribution and replication and this
allows the DBMS kernel and the other lower levels to be implemented with traditional
DBMS techniques. It is even possible to implement a distributed and replicated system
using an existing single processor DBMS products in the lower levels.

The database schema is necessary for compiling a query into executable code and this is
therefore an obvious location for the partitioning information. This is for example done in
Tandem NonStop SQL [Gro88] where the partitioning information is given when an SQL
table is created. The disadvantage with using the database schema to store this information
is that the fragment and replica information is more dynamic than the other schema
information. The schema is traditionally a part of the application and the declustering
aspects should be hidden from the application programmer. The programmer should not
need to know the actual number of nodes in the system and what the optimal fragment size
is. There might therefore be a need for automatic calculation of the number of fragments
and the location of them. System upgrades (e.g. adding more nodes) and node faults will
also change the number of available nodes which again must result in a change of the
declustering information.

This mismatch is even more clear when precompiled access plans are considered (precom-
piled transactions). Since it is not possible to know at compile time which database tuples
to actually access, the access plan must be parameterized. At run-time parameters will
give the partitioning key values of the tuples to access. There is no need for retrieval of
information about record layouts, access method, data types, and optimalization since all
this is compiled into the query based on the database schema. Since the key values are not
known at compile time, either the complete declustering information must be compiled
into the access plan or the declustering lookup must be done at run time. The first alterna-
tive can result in large code sizes for access plans and the need for recompiling them each
time the declustering changes.

5.4.3 DBMS kernel based declustering

The last alternative is to place the declustering into the DBMS kernel. The kernel is often
the most complex layer of an DBMS and this extra responsibility does not make it any
better. It also excludes using DBMSs with no special kernel support (which means most of
current products). Despite these disadvantages there are several good reasons to actually
implement declustering in the DBMS kernel.
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Implementing declustering in the DBMS kernel limits the logical DB processor to send
requests to the local DBMS kernel only. The kernel maintains the fragmentation and
replication information and forwards the request to the correct nodes. While the logical
DB processor has little knowledge about the recovery and concurrency mechanisms that
exists in the DBMS kernel, the integration of declustering into the kernel can make better
use of these mechanisms. Hvasshovd [Hva92] shows how the integration of logging and
recovery with hot stand-by updating will give significant performance advantages. All
updates are performed on primary replicas with normal concurrency control. Hot stand-
bys are updated by directly shipping log records from the primary to the hot stand-bys
and executing redo. This allows higher intra-transaction concurrency, lower concurrency
control overhead and reduces the communication overhead. The tighter synchronization
of the replicas can also speed up both the detection of errors, the takeover process, and the
recovery after the failure.

5.5 Availability through replication

There are three ways to achieve improved availability through replication:

Detect errors: If one replica is different from another an error has occurred.

Mask errors: If one replica is lost as the consequence of an error it is possible to mask it by
accessing another replica instead.

Self repair: The remaining replicas after a replica loss can be used to reproduce the lost
replica on an alternate location reestablishing the fault-tolerance level.

In this work we will investigate masking and self repair leaving error detection to later
research.

Availability to DBMS services depend on the availability to at least one replica of each
fragment. For the shared-nothing architecture there are several types of errors that will
cause the loss of one or more replicas, either temporarily or permanent. An error causing
a replica to become unavailable without damaging the data itself (e.g. a communication
network failure making the node and residing replicas inaccessible) can cause a temporary
replica loss. If the disk surface is damaged, the replicas stored on this disk are probably
lost forever.

Even though multiple replicas are employed to achieve high availability to data there are
some potential negative consequences of failures that must be taken into account:

Reduced fault-tolerance level: A failure will cause a reduction of the fault-tolerance level
until the error has been repaired. In this state the system is more vulnerable to faults
that can cause loss of all replicas.

Performance degradation: An unavailable hardware unit means that there are less re-
sources available to process the requests issued by clients. Recovery and repair
procedures also use these resources. If this degradation causes the system not to give
the specified performance the system can be considered unavailable. Another effect
is that a higher load may cause a higher failure intensity and this happens just when
the system is most vulnerable.
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Temporary unavailability: There is a latency from a fault occurs until it is detected, diag-
nosed, recovered, and the system is ready to mask the error. In this time period the
service will appear unavailable.

It is possible to trade these effects against each other. A fast fault detection mechanism
can reduce temporary unavailability but require extra resources for frequently sending I-
am-alive messages and excessive checking of data and results. These extra resources could
otherwise be used for reducing performance degradation and faster repair and recovery.
Giving repair maximum priority will reduce the time when the system is vulnerable for
double faults, but seriously degrade the performance. By giving client requests maximum
priority we ensure service availability during repair, but on the other hand increases the
probability of a double fault.

5.5.1 Information loss granularity

A failure can be classified based on the IE that is lost as a result of the failure. These failures
have varying granularity and are partially contained in each other. A disk failure can for
example also be considered to be both a node and a site failure. We consider the following
failures:

A page failure is the unability to read or write a disk page. Typically caused by a bad sector
on a disk. Detected by the disk controller.

A disk failure is the loss of access to data stored on a disk. Caused by failed disk drives or
disk controllers. Detected by the device driver.

A node failure is the loss of access to all data on a node. Caused by failed hardware com-
ponents like processor, memory, local communication, and disk controller. Detected
by RPC timeouts, watchdogs, or communication sub-system.

A site failure is a failure of all or most of the nodes on a site. It is typically caused by power
outages or disasters like fire or earthquake. First symptom is that a burst of node
failures are detected. When the number of node failures on a site exceeds a certain
limit, it is considered to be a site failure.

A fragment failure is the unability to access the content of a fragment. A fragment can
be stored spread over more than one disk. This can be caused by bad software or
transient hardware failures corrupting the physical data structures. This is detected
by the database access method.

Figure 5.5 shows the hierarchy of failure granularity. The size of the information loss unit
is important for the consequences of the failures. If only a small amount of data is lost,
little work is required to repair the damage, only a small fraction of the operations will be
affected, and the amount of extra work that must be moved to other nodes is minimal. The
effects of a site failure for a two site system is more dramatic. The remaining site will then
have to handle all the requests that previously were handled by the two in cooperation.
When the failed site becomes available again it must be recovered either by an incremental
recovery or a full reload. Both these alternatives mean a significant overhead for the
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disk sitefragment nodepage

Figure 5.5: Information loss unit granularity for a fragment replicated system.

operating site. Is is also clear that the loss of a large IE results in a state with a higher
probability for loss of all replicas than the loss of a small one.

One important prerequisite for fault-tolerance through replication is that the replicas have
independent failure modes. That means that the failure causing the loss of a replica should
not affect the other replicas of the same IE. Applied to the shared nothing architecture this
means that distributing replicas over different sites theoretically gives protection against
all types of failures except those crashing all the sites.

It is also possible to have a varying degree of fault-tolerance for different type of failures.
Assume that a system has two sites but are maintaining four replicas of all fragments, two
at each site. The replicas are organized so that no nodes store two replicas of the same data
(require at least two nodes at each site). This scheme can tolerate only one site failure, but
three page, fragment, disk, and node failures.

5.5.2 Trading between types of unavailability

As discussed in Section 3.5 there are several reasons for unavailability in a DBMS server
which all have different characteristics. The probability and duration of each of these
unavailabilities depends on both server design and implementation and the way it is used
by the applications, users, maintenance, environment, etc. The designer of the DBMS
server primarily gives three contributions to achieve a specified availability. First, the
server has an availability figure of its own, second, mechanisms protect against external
availability threats, and third, mechanisms are provided for external components to help
them contribute to a better system availability.

Some of the types of unavailability are preferable over others and some should by all means
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be avoided. The server designer can trade between them to achieve as good availability
as possible at the lowest possible cost. Below follows a list of guidelines for the DBMS
designer.

1. Avoid ACID violations. Permanent data loss is violating the durability requirement
on the transactions and byzantine responses can violate any of the ACID properties.
Most users will consider an ACID violation a catastrophic event. An example of
this is recovery of data loss by rolling in a backup that is not completely up to date.
Updates done since the backup was produced are lost. For a bank this means that
transactions are lost and that account balances might be wrong.

2. Prefer temporary unavailability over permanent. If the system becomes perma-
nently unavailable, the system will never fulfill its misson. A car engine being
overheated is better immediately halted and fixed rather than driving on resulting in
a completely destroyed engine.

3. Prefer planned unavailability over event triggered. If the unavailability can be
planned, the users can take precautions and prepare for the outage. Planned un-
availability can also be scheduled to periods of low usage intensity or less critical
hours. For a car several parts are being replaced during regular service calls. These
calls can be scheduled at the owners convenience in contrast to sudden breakdowns.

4. Prefer delayable unavailability over immediate. A system event (like a component
failure) can cause triggered unavailability. This unavailability can either be effective
immediately or delayed with an increased vulnerability of additional failures. Un-
availability should be avoided at critical moments and it might be better to delay it
(if possible) to a less critical point in time. Delaying it too long will on the other hand
compromise reliability.

5. Avoid unavailability requiring manual repair. Some failures require human inter-
action before availability is reestablished again, i.e. the failure is outside the domain
of failures that automatically can be masked by the system. This kind of unavailabil-
ity is unpredictable since the system itself can neither guarantee when the system
becomes available again nor that repair will be done correctly.

6. Reduce the length of service interruption. Reducing the delay from the system
becomes unavailable until it is up and running again will increase the total availability.
This can be done by keeping standby repair personnel.

7. Avoid service interruption. A goal to strive for is to avoid unavailability all together.
Modules should be tested well before set into service. The designer should employ
mechanisms making it possible to automatically mask errors.

Unfortunately these guidelines are often conflicting and the DBMS designer has to trade
between the different sorts of unavailability. Say for example, a computer system em-
ploying replicated disks. When a disk fails during busy hours we have two alternatives.
Either we can stop the system, replace the disk, and reproduce the lost replica, or we can
let the computer run until the evening when usage is low before it is being repaired. In
the first case the unavailability during the day causes a lot of annoyed users. The second
alternative hide this but increases the risk of loosing both replicas before the repair has
been done causing a lot of angry users. Chapter 8 contains an analysis of this and other
tradeoffs.
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5.5.3 Partial availability

From the definitions in Section 3.3.6, service availability is based on the ability to correctly
answer a given percentage of the client requests over a time interval. Even though all
replicas of an IE (e.g. a fragment) can be lost resulting in all requests involving these data to
be rejected, the system can satisfy the service definition. The single user trying to get access
to these data will certainly call the system unavailable but the system as a whole is available.
To satisfy the service definition the lost data items must either be small compared to the
complete database or rarely accessed. It is therefore desirable to have a unit of failure
of fine granularity. The allowed rejection percentage is certainly also important for the
availability. A higher rejection percentage makes the system availability less sensitive to
loss of data.

5.5.4 Replica inconsistencies

Replica inconsistency is a serious problem with replication. Data corruption also applies
to single replica databases, but more copies mean increased probability for such errors,
especially if the replicas are updated by software made with design diversity in mind. 4

The source for such inconsistencies is undetected or unmasked hardware or software faults.
Detecting and correcting inconsistent replicas are outside the scope of this work.

5.5.5 Skew

One of the goals for a partitioning scheme is to distribute tuples equally among the frag-
ments. Unfortunately this is not always possible. A skewed partitioning key distribution
can result in disk overflow and/or processing bottlenecks on the nodes storing the largest
fragments. The nodes with the smallest fragments will be running idle part of the time
and have free storage capacity. If this skew results in a sufficiently high number of client
requests to be rejected the system will be unavailable. Walton et al [WDJ91] describes
several types of skew and their effect on database join processing.

An obvious solution to the skew problem is to over-dimension the system making it handle
a skew of a given size. The disadvantage is increased system cost.

An alternative solution is to try to avoid skew completely by carefully selection of decluster-
ing strategy. If the partitioning key value distribution is known in advance, the partitioning
scheme and its parameters can be selected before the data is inserted into the database.

Without this advance knowledge the designer should try to use a general partitioning
scheme which perform well for most key value distributions. The round-robin partitioning
can distribute the tuples perfectly when it is initially loaded or if the relations only grows.
Unfortunately it does not support direct access to tuples when the partitioning key value
is known. A dynamic database where tuples are often inserted and deleted can also lead
to skew despite a perfect initial distribution.

The unmodified range partitioning scheme require that the DBA defines the ranges for
each fragment since there do not exist any range subdivision that will fit all kinds of data.

4Some will argue that it is better with an undetected, incorrect database record than two differing records
causing confusion. If nobody detects the error, it is no failure!
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Even if the data is known when the relation is created and ranges giving an unskewed
distribution can be computed, insertions and deletions can change the distribution and
gradually cause the distribution to become skewed.

The Hybrid-Range Partitioning Strategy [GD90] is an extension to range partitioning which
divides a relation into a large number of small logical fragments that do not depend on the
number of processors in the system. Each fragment is a small range of the partitioning key
domain. For large relations the number of fragments will be much larger than the number
of nodes and multiple fragments will be allocated to each node. By dynamically moving
fragments around, skew can be adjusted.

A hash partitioning scheme behaves well for most applications but there are pathological
cases where nearly all tuples can end up in a few fragments. Hashing schemes handle
dynamic data well. A solution similar to hybrid-range partitioning can be used for hashing
to reduce sensitivity to the quality of the hash function and statistical variations. As we
will see later, these hybrid schemes can also be exploited for achieving better availability.

5.5.6 Importance of repair

Without repair a fault-tolerant system gradually degrades and the ability to withstand
faults deteriorates. After the first non-transient system failure a system without repair will
not be able to provide services any more. In the context of replicated systems, replica repair
is the reproduction of a replica after it has been lost. MTTR for replica repair is the average
time from a replica becomes unavailable until it is ready to be accessed again. Low MTTR
values means a low probability of double faults leading to system unavailability.

Manual interaction from human operators will increase the MTTR unnecessarily if it al-
ready is redundant resources available to reproduce the lost replica. Self repair is the process
where the system automatically and without delay initiates a reestablishment of the fault-
tolerance level. Self repair for declustered database systems has previous been proposed
by Hvasshovd et al [HST91a, HST+91b, Hva92] and Chamberlin and Schmuck [CS92].

After a transient error causing loss of data, self repair can compensate the loss immediately
by recovering or reproducing the lost data on the same location, i.e. on the same node
assuming a node failure granularity. For a permanent HW error this is not possible since
access to the failed unit is lost. For these types of failure there are three self repair strategies:

Await HW replacement: Wait until the failed node has been replaced by maintenance
personnel. When the new node has been detected and reintegrated, the replicas
are reproduced on the new node. MTTR is the sum of manual replacement and
replica reproduction time. For most maintenance organizations the manual repair
will dominate giving repair times between a few hours and one day.

Distributed spare: After a failure the lost replicas are reproduced on spare capacity on the
remaining nodes in the system. As long as there is enough spare capacity the MTTR
is just the time it takes to automaticly reproduce the lost replicas, typically less than
one hour. Since the load of the failed node now must be served by one or more of the
other nodes the system capacity is degraded. If there is insufficient spare capacity to
provide full availability, the system can set priority on the transaction classes and the
data needed by the transactions. The data with the highest priority can be repaired
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first delaying the replication of the lower priority data. This technique applied to
mainframe systems has been discussed by Brooks [Bro85].

When the node has been replaced, the replicas are moved back to the original location.
The the spare capacity must be reclaimed on the nodes so they are ready to handle
new failures. The load balance is also brought back to normal and symmetry restored.
Compared with the first alternative, the data must be copied twice instead of only
once.

Dedicated spares: This alternative is similar to the distributed spare strategy but instead
of spreading spare capacity over active nodes, the spare capacity is left on a few
passive nodes which act as spare nodes. They do not take part in normal operations
but after a node failure one of the spares is automatically set to replace the failed one.
All lost replicas are reproduced on the spare node. When the failed node is replaced
it becomes a spare node and the data distribution is kept as it is. Thus data need only
be copied once for each failure.

The two strategies for using spares provide immediate replica repair which increases the
overall availability and reduces the need for corrective repair.

Self repair can either be done off-line or on-line. Off-line repair executes exclusive without
any transaction conflicts. All processor, disk and communication resources can be used for
the repair reducing the copy time to a minimum. The disadvantage is that the system is
unavailable during the repair.

On-line self repair complicates the production of consistent replicas. We will assume that
concurrency control mechanisms allowing on-line production of copies without blocking
transaction access are used [HST+91b]. Since client requests are processed during the
repair, only unused capacity can be used for self repair. This prolongs the self repair time
and increases the probability for a double-fault.

5.6 Multi-site replication

5.6.1 System and database replication

The main motivation behind using multiple sites is tolerance against site failures like natu-
ral disasters or major operator mistakes. The traditional mechanisms provided have either
been system pairs or database replication where each site is an independent running computer
with a complete copy of the database [Gue91]. System pairs is a system replication scheme
where a complete computer system is replicated on another site. This is an asymmetric
replication strategy where a primary system serves transactions as long as it is operating.
In the failure-free situation the primary keeps the hot stand-by up to date by sending a
stream of journaling records to it. The hot stand-by receives the records and applies them
to its local replica of the data. If the primary fails, the hot stand-by takes over as primary
and all transaction requests have to be rerouted to it. A hot stand-by does not have to
update its copy of the database immediately, but can instead defer them and apply the
changes in larger batches. This means that there will be an inherent delay from a failure
is detected until the hot stand-by has been notified, has applied the outstanding updates,
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and then is ready to provide service. Some configurations even demand manual operator
actions for a takeover to take place.

When the original primary becomes available again the database is recovered and resyn-
chronized with the current database content. Eventually a takeover can be done so the old
primary gets the primary role again.

Database replication is similar to system pairs but instead of replicating a physical IE, the
logical IE is replicated. This allows more sophisticated configurations where one system
can store hot stand-by replicas for many other sites or two systems can mutually store hot
stand-by replicas for each other.

One question to ask is whether system and database replication is sufficient as the only
replication mechanism for user data. There are three main arguments against this approach:

Long takeover delays: For large configurations using site replication having numerous
disks, processors, and communication lines, a takeover is a major operation involving
actions of all units on the sites, communication reconfiguration, notification of client
computers, and eventually manual operator actions. Together with the delay caused
by making the hot stand-by up to date this means that a takeover has a major service
interruption (in the order of minutes). This penalty is significantly larger than the
unavailability following a takeover in single-site fault-tolerant computers (in the
order of seconds).

Reduced fault-tolerance level: If a whole site becomes unavailable when only a small
component has failed (e.g. a node), a complete replica of the whole database is
unavailable, i.e. the fault-tolerance level for the whole database is reduced with one.
For a large system this is much more severe than only getting the fault-tolerance level
reduced for the data items lost.

Assume a system with two sites and Ns nodes at each site. Let �fn be the MTTF for a
node and �r is the MTTR for any failure. The MTTF for a site �fs is then �fs = �fn=Ns.
The MTTFpair of a pair of failfast module is:

MTTFpair =
MTTFmodule

2

2MTTRmodule

Using this we can compute the system MTTF for respectively a site replicated system
(Ts) and a node replicated system (Tn):
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2�r
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=

1
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(5.1)

Tn =
1
Ns

�fn
2

2�r
(5.2)

Comparing the two equations we get a difference in system MTTF with a factor of
Ns in the favor for node replication, i.e. the difference increases with the number of
nodes on each site.
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Expensive self repair: The purpose of self repair is to reestablish the fault-tolerance level
as soon as possible to reduce the time gap when the system is exposed to double-
failures. To mask a site failure the complete database content on that site must be
copied to sites where it si not already stored. This is clearly possible through having
a spare system on an independent site but it is not likely to be justified from a cost
perspective.

Another aspect is the huge volume of data that has to be transferred between sites to
reestablish a new database copy. Either the network interconnecting the sites must
be of extremely high capacity or a long copy duration is unavoidable. One is tempted
to ask whether the self repair will complete before manual repair has finished or not.
In most cases self repair of system and database replicated systems therefore seems
not to be a good idea.

Site-takeovers should therefore be avoided whenever possible and other means used to
handle node failures. The traditional solution is to have an additional replication inside
each site and thus increasing initial system cost.

The main advantage of system and database replication is that each site is fairly indepen-
dent and can be maintained by separate maintenance organizations reducing the chance
of failures caused by operator errors. The site independence also opens up for on-line
software maintenance and major hardware changes by updating one site at a time while
other sites provide service.

The loose interaction between the sites also allows for heterogeneous sites, i.e. sites of
different design and manufacture. This improves the assumption of independent failure
modes between the copies of data and thus improves the overall reliability of the system.

On the other hand, the need for double replication increases the system cost significantly
(e.g. four copies of data instead of two). Two different replication methods also mean higher
system complexity leading to higher cost, more software errors, and worse reliability.

Another argument against system replication is the low utilization of the processing capac-
ity during normal operation. Even though the primary might be saturated with transaction
requests, the capacity on the hot stand-by site is only used to keep the hot stand-by up to
date and can not be used to offload some work of the primary. Database replication can
avoid this if multiple databases are stored in the system.

Two examples on such systems are Tandem Remote Duplicate Data Facility (RDF) [Gue91]
and IBM Extended Recovery Facility (XRF) [IBM87] which are database replicated systems
which work with their respective database products.

5.6.2 Multi-site fragment replication

The HypRa declustering strategy proposed by Hvasshovd et al [HST91a, HST+91b, Hva92]
combines multiple sites with fragment replication and is an alternative to system and
database replication. Fragment replication allows single fragment replica takeovers in-
stead of full site takeovers.

While transactions being run on a system replicated configuration are executed on the
primary site only, fragment replicated configurations must run transactions globally over
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multiple sites. Since all the primary fragment replicas no longer are located on one site
only, one transaction might have to access more than one site.

Thus, multi-site fragment replication requires a high degree of interaction between the
sites. Compared with system replication this sets higher demands on the communication
between the sites both with respect to capacity, latency and redundancy. The development
of high capacity switched communication technologies (e.g. ATM) as described in Chapter
4 may provide the necessary foundation for implementing multi-site fragment replication.

The consequence of communication delays

Physical limitations (speed of light) set a lower limit on the delay of messages sent between
nodes. The speed of light through optical fiber is approximately 2 � 10 8 m/s. An absolute
minimum round-trip time of a dialog between two sites located 1000 km apart (e.g. Tromsø–
Oslo) is 10 ms which is a significant delay compared with internal communication latencies
for state-of-the-art parallel computers (1–100 �s). The distance between two points on the
earth which is located as far apart as possible (pole to pole) is approximately 20,000 km
following the surface of the earth giving a 200 ms round-trip time. Satellite communication
will have round-trip times of at least 480 ms for a single hop. Multiple hops are required
to reach an arbitrary point on the earth.

For system and database replicated systems the transfer of journal records from the primary
to the hot stand-by can be done outside the time critical execution path of a transaction and
communication delay will not affect transaction execution latency. On the other hand, a
fraction of transactions running on a multi-site fragment replication configuration will have
to access multiple sites inside the time critical execution path. For those transactions the
communication delays of inter-site messages will be a part of the total transaction execution
time. For typical transaction processing systems demanding sub-second response times,
surface communication (electrical or optical fiber) between reasonable distant sites will
be acceptable. For those systems communication delay will be dominated by disk and
queuing delays.

In cases when long delays are acceptable from the applications point of view, they have
consequences for database internals. Aggregate processing requirements (number of disk
accesses or processor cycles) for each transaction does not increase with increasing com-
munication delays, but so does the total time each transaction locks the resources it uses
(communication buffers, process slots, memory, database locks). This means that the
resource demands increase and the probability for resource contention grows.

Distance between sites

Since a long distance between sites clearly affects the overall performance of transaction
processing it is tempting to locate the sites close to each other. Unfortunately this is in
conflict with the availability goal. The reason we used for multiple sites was to reduce the
chance of a single event causing all sites to fail. Both power and communication failures,
flood, and earthquakes are likely to affect whole regions, not only the location of a site.

The distance between sites also affects the way the client computers are connected to the
database server. For a single site configuration, the clients connect to this site for service.
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If the connection is lost, either the server has become unavailable or the communication
channel is broken. A client should try to reestablish the connection through an alternative
communication path.

For a system or database replicated configuration a client connects to the primary site
(which might be the most remote site for the client). If the primary becomes unavailable,
the client must then establish a connection to the hot stand-by taking over as primary. Since
all clients will be doing this just after the failure, the workload will peak. This only adds
to the workload required by catching up the transactions being queued during takeover
processing. If the sites are located far apart, a client can not be close to all sites and will
— depending on the current primary — have to communicate over long distances causing
long delays.

Multi-site fragment replicated configurations allow a client to connect to the closest site (or
any other site) and might outweigh the penalty of long communication delays internally in
the database server. If a site fails only those clients connected to this site need to establish
new connections. Clients can reduce the delays caused by a site failure by always keeping
connections established with two sites and using whichever is available.

The discussion above assumes that full DBMS service should be available as long as at
least one site is available. This assumption is based on the fact that systems with few (two)
sites are the most sensible configuration from a cost efficiency viewpoint. Two sites are
sufficient for handling natural disasters and maintenance failures. One exception here is
military systems where a high redundancy is crucial for service during combat.

Communication cost is limited to connecting only two sites. Housing, maintenance, and
security cost is mainly a function of the number of sites, less of the amount of hardware at the
sites. When employing more than two sites it is possible to design multi-site declustering
schemes that require that more than one site are operable for service to be available. For
the rest of this work we will assume that one site should be sufficient to provide DBMS
services.

If this assumption holds a few observations can be made. First, each site must store the
complete database, and second, the number of replicas of a data item will be greater or
equal to the number of sites.

Even though the HypRa declustering (HDc) strategy was the first declustering strategy
proposed for multi-site fragment replication, other proposed declustering strategies actu-
ally provide the necessary characteristics to be multi-site declustering strategies. Mirrored
declustering (MDc) [CK89] and Chained declustering (CDc) [HD90] are two such strategies
that will be discussed together with HypRa declustering and Minimum Intersecting Sets
declustering (MISDc). MISDc is a novel declustering strategy proposed in this work.

To conclude this section we can summerize the advantages of multi-site fragment repli-
cation: minimal number of replicas to maintain, site unavailability can be masked, node
failures can be masked without a significant reduction in processing and fault-tolerance
level, and most important in our context, self repair through sparing is reasonable.
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Chapter 6

Existing declustering strategies

This chapter describes existing multi-site declustering strategies. Several declustering
strategies have been described in previous work but only RADD and HypRa declustering
are proposed as multi-site. As this chapter will show, single-site declustering strategies
can also be adapted to multi-site use.

The chapter will start with general considerations about the declustering strategies and
then proceed to describe and analyze the individual strategies.

6.1 General considerations

Before describing the specific declustering strategies we will take a look on the parameters
used to characterize them. Using these parameters it is easier to precisely describe them
and analyze their behavior. We will also list criterias that can be used to compare the
strategies against each other. The symbols used in this chapter are listed in Appendix A.

6.1.1 Assumptions

� We are studying one large relation distributed over all nodes. For more than one rela-
tion the methods described can be applied for each relation, one by one. Combining
the knowledge of multiple relations can potentially give better results but this is not
considered here.

� There is no data skew and all initial fragments are of the same size. For some datasets
this hold, but in the case it don’t we assume that fragment sizes can be dynamically
adjusted so they give a balanced load.

� All sites have the same number of nodes. We have full control on allocation of nodes
to sites. Each time a node is added to one site we have to add a node to all other sites.

� One fragment replica belong to one database replica. Initially a database replica is
complete but failures may cause it to become incomplete. One node stores fragment
replicas from one database replica only. This causes a node failure to only affecting
one database replica.
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Figure 6.1: A system with 3 sites and 15 nodes. One node on each site is a spare (nodes n0
4, n1

4, and
n2

4). Each site stores a complete replica of the database which is partitioned into eight fragments.
Each node stores two fragment replicas. The first fragment stored one node n0

3 is replicated on node
n1

1 and n2
0 (indicated by arrows).

Anyway, neither of the assumptions significantly favor one declustering strategy over
another but where this occurs remarks are made in the text.

6.1.2 Characteristic parameters

The declustering strategies have the following characteristic parameters:

Number of sites S: Number of sites.

Number of nodes N : Total number of nodes including spares.

Active nodes per site Ns: Number of nodes per site excluding spares.

Spare nodes per site N 0
s: Number of spare nodes per site. The relationship between S, N ,

Ns, and N 0
s are given by: N = S(Ns +N 0

s).

Number of replicas R: Number of replicas of a relation.

Number of fragments F : Number of fragments the relation is partitioned into.

Replica fanout Zr: The (average) number of nodes belonging to one database replica stor-
ing common fragment replicas with one node in another database replica. Figure
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6.1 shows a system with S = 3 sites, N = 15 nodes, Ns = 4 active nodes per site,
N 0
s = 1 spare node per site, R = 3 database replicas, and F = 8 fragments. Each site

constitutes a database replica. Since the fragments stored on node n 0
3 is distributed

over 2 nodes both on site s1 and s2 the replica fanout must be Zr = 2.

Takeover fanout Zt: The (average) number of nodes taking over the transaction processing
load immediately after a node failure. Assuming the configuration in Figure 6.1 and
that the load can be evenly distributed over the remaining replicas of lost replicas,
the takeover replica must be Zt = 4.

Refragmentation fanout Zf : The (average) number of nodes the fragments stored on a
failed node is redistributed over after self repair. If node n0

3 fails and the two lost
replicas are reproduced on the spare node n0

4 the refragmentation fanout is Zf = 1.
If the lost fragments are subfragmented into three small fragments and distributed
over node n0

0, n0
1, and n0

2 the refragmentation fanout becomes Zf = 3.

Site fanout Zs: The number of sites refragmentation is activated on when a node fails.
If the refragmentation described above only is activated on site s 0 the site fanout
becomes Zs = 1. On the other hand, if the refragmentation is done on all the sites,
the fanout becomes Zs = 3.

6.1.3 Evaluation criterias

The declustering strategies will be evaluated based on the following criteria:

Unavailability U : Fraction of service time the system is not providing service.

Storage efficiency: The fraction of the storage required by the declustering strategy that a
non-redundant storage would have used for the same data volume. The efficiency
range from 0 (infinite storage needed) to 1 (no redundancy). E.g. if the efficiency is
0.40, redundant information constitutes 60% of the total storage volume used.

Range stride �R: Average continuous fraction of the partitioning key value domain range
assigned to fragments located on different nodes. The range stride varies from 0 to 1.

Fragment stride �F : Average number of continuous fragments in the partitioning key
value domain located on different nodes. The relationship between range and frag-
ment stride is given byF ��R = �F . The value should be as close to the total number
of nodes to achieve maximum parallel execution of queries.

Self repair support: What kinds of self repair does the scheme support (dedicated or
distributed sparing)?

Planned repair support: Does the scheme provide planned repair (yes or no)?

Homogeneity: If no nodes have a role different from the other nodes the scheme is homo-
geneous (yes or no).

Single site service: Can the system provide service if only one site is available when S � 3
(yes or no)?
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Simplicity: How simple is the scheme? A complicated scheme adds to the software com-
plexity and the number of software errors (++=very simple, +=simple, 0=normal,
�=complicated,��=very complicated).

6.2 Physical declustering

RAID and RADD are both page-based declustering strategies which provide increased disk
I/O throughput and improved availability. RAID is a disk array architecture accessible by
processors directly attached to the disks. RADD is an application of RAID techniques for
distributed system and is therefore the most interesting of the two in this study. RADD
is described by Stonebraker and Schloss in [SS90] which this analysis is based on. The
analysis will first look into the original RAID architectures and will then more specificly
describe RADD.

6.2.1 RAID

The RAID term originates from University of California, Berkely. RAID was originally
an acronym for Redundant Array of Inexpensive Disks but has lately been changed to Re-
dundant Array of Independent Disks1. RAID is an organization of multiple small disk units
(PC/workstation technology) into a single large logical disk.

The first work on parallel disks was for supercomputer applications. In [BD83] Boral and
DeWitt suggest this architecture for database machine applications. Other work includes
[Kat78, Kim86, SGM86, BG88, GHW90]. This overview is based on [PGK88, LK91, CLG+94]
which structure previous work into a framework with common terminology.

The motivation for RAID is higher performance, better reliability, and a lower price/per-
formance ratio compared to single large disk unit with the same storage capacity. Multiple
disks will have many independent heads which can do independent seeks and parallel
disk I/O. Small disks are produced in high volumes for the PC market with low prices
but have unfortunately showed low reliability figures. According to the manufacturers’
specification this has improved in the last years and the rated MTTF has improved with an
order of magnitude. Another problem with disk arrays is that multiple units have a worse
system MTTF than a single disk (MTTF system = MTTF disk=n) where n is the number of
disks). The solution to this problem is redundant disks. How this redundancy is organized
is what mainly differentiates the RAID levels from each other.

The RAID papers describe seven different RAID schemes denoted RAID level 0 through 6.
Figure 6.2 illustrates these six RAID levels.

RAID level 0

RAID level 0 is identical to disk striping [SGM86]. This level was not listed in the original
RAID paper [PGK88] and has later been added. It should be questioned if RAID level 0

1Due to current low sales volumes of RAID systems they tend to be more expensive than conventional
controllers. Compared with the old mainframe disks they are inexpensive, but not with respect to current
micro-computer single disk solutions.
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Figure 6.2: RAID level 0 through 6. Logical disk pages are enumerated i� 4 through i+ 7. Dashed
frames group together smaller units from multiple disks into a full logical page. Redundant disk
pages are shaded. P [i; i+ 3] and Q[i; i+ 3] denotes parity page for logical page i through i+ 3.
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can be included among the RAID levels since it contains no redundancy.

Data is interleaved over the G disk in a group in a round-robin fashion, either bit, byte, or
page interleaved. The interleave unit says what unit of information is to be retrieved from
one disk before retrieving from the next disk in a round-robin sequence.

Bit and byte interleaved RAIDs must read and write all disks to transfer a logical disk
page. Since the transfer can be done in parallel the I/O rate is potentially high for a
single task accessing big chunks of data sequentially. This fits well in a supercomputing
environment but is poor for typical transaction processing systems where disks accesses
are small, random, and concurrent.

A page interleaved RAID increases the granularity for the interleaving and ensures that
the minimum unit of transfer between disk and memory (i.e. a page) is not spread over
multiple disks. Independent transfers of pages mapping to different disks can therefore be
done in parallel providing performance suitable for transaction processing.

RAID level 1

The RAID level 1 scheme is a well known and widely used method for achieving higher
availability. Depending on the implementation it is also called Mirroring, Shadowing, and
Disk duplexing. See for example [BG88]. RAID level 1 stores, bit for bit, identical data on
two (or more) disks, one for each replica. When a page is to be read any of the disks can
be accessed (i.e. independent parallel reads are possible). When a page is written all disks
must do the write.

RAID level 2

RAID level 2 is an extension to bit or byte interleaved RAID level 0 where extra disks are
provided to store a Hamming code checksum [Ham50] of the data stored. With G data disks
and C checksum disks one bit from each of the G + C disks compose a G + C bit word
where all single bit errors can be corrected and double bit errors detected. With 10 data
disks (G = 10) the number of checksum disks must be 4 (C = 4), i.e. a total of 14 disks.
This is identical to the method used by error correcting RAM.

Since RAID level 2 is bit interleaved, all disks must be accessed at each read and write
operation (also the checksum disks) making it unsuitable for transaction processing envi-
ronments.

RAID level 3

Current disk technology includes both error detecting and correcting codes internally, and
each individual disk is able to detect whether it can recover the data written to the disk
surface or not. If the disk logic has failed no data is returned at all, and this can be detected
with a timeout. The probability of returning wrong data from the disk is negligible. This
means that bits read from a disk are either “0”, “1”, or “failed” which differs from RAM
where each bit is either “0” or “1”. Hamming codes are suitable for RAM error correction
and must use multiple check bits both to detect that something has failed, which bit(s) that
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have failed and the correct value of the corrupted bit(s). Since disks are able to flag errors
themselves, a disk array is able to detect and locate a bit error without any extra checksum
disks. When the bit position is known a single checksum disk is all that is necessary to
correct a single bit error.

RAID level 3 is such a bit or byte interleaved disk array with a single checksum disk. The
checksum disk stores the parity of the content of the other disks and is therefore called the
parity disk. The parity is constructed by taking a bitwise exclusive or operation (XOR) over
the corresponding bits of the data disks. When all disks operate correctly only the data
disks need to be accessed when data is read. To write data both the data disks and the
parity disk must be written to.

When one of the data disks has failed, the lost data can be reconstructed by taking an XOR
between the remaining data disks and the parity disk.

RAID level 4

RAID level 4 differs from level 3 in that it is page interleaved instead of bit or byte inter-
leaved. This accommodates for independent parallel page reads with one disk operation
for each read. Writing is a bit more complicated since the parity disk contents is a function
of the contents of all data disks. The data page to be changed can simply be overwritten.
The parity page contents on the other hand is computed by taking a bitwise XOR of the
old parity page, the old data page, and the new data page contents. It seems necessary
to read two disk pages and write the same two pages back to disk again for each single
write operation to the disk, a total of four disk accesses. Since most transaction processing
operations are page modifications, the data page is most likely to already be in memory
when the writing is executed. Each write operation will therefore cost three disk accesses.
The read of the parity disk can also be hidden by smart prefetch algorithms.

The disadvantage with RAID level 4 is that all write operations have to access the parity
disk reducing the potential for parallel operations. All small write operations must update
the parity disk in addition to one of the data disks. Having G data disks and only doing
write operations the parity disk will see G times more accesses than the data disks.

RAID level 5

To avoid the parity disk bottleneck, RAID level 5 avoids localizing the parity task to a
single disk. The parity pages are distributed over the disks in a round robin scheme such
that all disks get the same load. Several different strategies for placement of parity are
analyzed by Lee and Katz in [LK91].

RAID level 6

RAID level 2 through 5 can only mask a single disk error. RAID level 6, which was proposed
by [BM93], adds a second checksum disk per disk stripe. The two checksum pages per
stripe contain a Reed-Solomon error correcting code able to mask two concurrently missing
disk pages in a stripe. Otherwise the scheme is similar to RAID level 5 with checksum
pages distributed over the disks in the array.
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RAID interleaving # Storage read load write load

level disks efficiency ok failure ok failure

0 bit/byte G 1 1 – 1 –

0 page G 1 1
G

– 1
G

–

1 – 2 �G 1
2

1
2G

1
G

1
G

1
G

2 bit/byte G+ C G
G+C 1/1 1/1 1/1 1/1

3 bit/byte G+ 1 G
G+1 1/0 1/1 1/1 1/1

4 page G+ 1 G
G+1

1
G

/0 2
G

/ 1
G

1
G

/2 1
G

/2G�1
G

5 page G+ 1 G
G+1

1
G+1

2
G+1

3
G+1

3G+1
G(G+1)

6 page G+ 2 G
G+2

1
G+2

2G+1
(G+1)(G+2)

5
G+2

5G+3
(G+1)(G+2)

Table 6.1: Properties of RAID level 0 through 6.

Writing a disk page results in a total of six disk I/O’s, three reading the old data page
and the two checksum pages plus writing them back again. If the writing is caused by an
update the data disk page probably still is in the disk buffer after the read and we end up
with five disk I/O’s.

Discussion

A summary of the seven RAID levels are shown in Table 6.1. The “storage efficiency”
column shows the fraction of the total storage available for user data. The two “read load”
columns show the average number of disk accesses per disk that one logical page read
causes when no disks have failed and when one data disk has failed respectively. RAID
levels 2, 3, and 4 show both the numbers for the data disks and the parity disks separated by
a “/”. The same applies to the “write load” columns except showing disk write numbers.
It is also possible to construct other combinations of interleaving and RAID level (e.g. page
interleaved RAID 2) but they are not discussed in the original RAID papers and will not
be discussed here either.

To decide the best RAID level to use in a transaction processing environment we want to
compare them quantitatively. Transaction processing typically has a majority of randomly
distributed single disk page accesses. We will assume there are twice as many reads as
writes and that all writes on a page are preceded by the page already being read.

Three metrics to compare RAID levels over are storage efficiency, speedup, and speed efficiency.
Storage efficiency is the fraction of the disk storage that is available for user data. Speedup
is the number of times faster the RAID level is compared with a single disk. In this context
speed denotes the average number of disk accesses per time unit. Speed efficiency is the
speedup divided by the number of disks used. As performance degrades when a disk has
failed it is also interesting to find the speedup and efficiency in this situation.

Table 6.2 shows speedup and speed efficiency of the RAID levels compared with a single
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RAID interleaving # speedup speed efficiency

level disks ok failure ok failure

single disk 1 1 – 1 –

0 bit/byte G 1 – 1
G

–

0 page G G – 1 –

1 – 2 �N 3
2N N 3

4
1
2

2 bit/byte G+ C 1 1 1
G+C

1
G+C

3 bit/byte G+ 1 1 1 1
G+1

1
G+1

4 page G+ 1 3
2

3G
2G+1

3
2(G+1)

3G
(2G+1)(G+1)

5 page G+ 1 3
5(G+ 1) 3G(G+1)

7G+1
3
5

3G
7G+1

6 page G+ 2 3
7(G+ 2) 3(G+1)(G+2)

9G+5
3
7

3(G+1)
9G+5

Table 6.2: Speedup and speed efficiency of RAID level 0 through 6 for a transaction processing type
application relative to a single large disk when there are twice as many reads as writes. Larger
numbers are better.

disk system. Since some disks might be accessed more than others they will become
bottlenecks and limit the overall disk array performance. The equations in the table
accounts for this effect. Table 6.3 gives the numbers for three different array sizes.

As the tables show, RAID level 1 has the best speedup and speed efficiency of all error
correcting RAID levels, but with a high disk storage overhead. RAID level 5 is the second
best and not so far behind RAID level 1 with respect to speedup and speed efficiency, but
without the poor storage efficiency.

Analysis have shown that RAID level 6 clearly is the best alternative with respect to
availability. RAID level 1 takes the second place followed by RAID 5 and the other parity
strategies. RAID level 0 has no redundancy and clearly has the worse availability. See the
papers listed above for a more detailed discussion on RAID availability.

The RAID concept has no central position in this work since it is best suited to operate
inside a single node but as we will see the results are also valid for multi-site configurations.
Both RAID level 1 and 5 are therefore of interest as declustering strategies. In this section
we will discuss RADD (RAID level 5) and continue with Mirrored Declustering (RAID
level 1) in Section 6.3.1.

Spare disks

In addition to data and parity disks it is also possible to include spare disks in a RAID
disk array. After a disk failure the lost disk content can be immediately reconstructed and
written to a spare disk as a background task. Later, when the failed disk has manually
been replaced, it becomes the new spare. Figure 6.3 shows an example of a RAID level 5
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G = 5 G = 10 G = 25

RAID interleaving storage speed eff storage speed eff storage speed eff

level eff. ok fail eff. ok fail eff. ok fail

0 bit/byte 1.00 0.20 – 1.00 0.10 – 1.00 0.04 –

0 page 1.00 1.00 – 1.00 1.00 – 1.00 1.00 –

1 – 0.50 0.75 0.50 0.50 0.75 0.50 0.50 0.75 0.50

2 bit/byte 0.56 0.11 0.11 0.71 0.07 0.07 0.83 0.03 0.03

3 bit/byte 0.83 0.17 0.17 0.91 0.09 0.09 0.96 0.04 0.04

4 page 0.83 0.25 0.23 0.91 0.14 0.13 0.96 0.06 0.06

5 page 0.83 0.60 0.42 0.91 0.60 0.42 0.96 0.60 0.43

6 page 0.71 0.43 0.36 0.83 0.43 0.35 0.93 0.43 0.33

Table 6.3: Storage and speed efficiency of RAID level 0 through 6 for three values of G when there
are twice as many reads as writes.

with a spare disk.

The advantage of immediate reconstruction is twofold. First, it reduces the time window
when the system is vulnerable to a second disk failure causing irrecoverable data loss.
Second, since a disk array has a significant reduction in performance while a disk has
failed and pages have to be reconstructed for each disk read, immediate reconstruction
will reduce the time with reduced performance.

The use of dedicated spare disks is by Menon and Mattson in [MM92] called dedicated
sparing. The same paper also shows two other strategies; distributed sparing and parity
sparing. With distributed sparing spare disk pages are distributed over all the disks in the
disk array similar to the distribution of parity pages for RAID level 5. Figure 6.4 shows
how parity, spare and disk pages can be distributed over six disks. Note how each row
consists of four data, one parity, and one spare page. If one of the data pages or the parity
page fail, the lost page can be reconstructed and written to the spare page in the same
row. Also observe how six consecutive pages always are assigned to different disks. This
speeds up accesses to large continuous data by allowing parallel I/O.

Parity sparing requires the presence of more than one disk array. If one disk fails, two
disk arrays are merged. Of the two original parity pages per stripe, one is used as the new
parity page and the second replaces the lost disk page.

Distributed and parity sparing are both graceful degradation strategies. While distributed
and parity sparing exhibits higher performance and are symmetric (no disks has spe-
cialized tasks) when all disks are functional, this changes after a disk failure. After the
reconstruction of lost pages the regular allocation of pages becomes disrupted and some
consecutive pages are allocated to the same disk. By using the dedicated sparing strategy
the original page allocation is maintained after reconstruction. Also, it requires only one
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Disk

Block 1 2 3 4 5 6

0 P 0 1 2 3 S

1 4 P 6 7 8 S

2 9 5 P 12 13 S

3 14 10 11 P 18 S

4 19 15 16 17 P S

Figure 6.3: A RAID level 5 disk array with one spare disk. Parity (P) and data pages (0; 1; 2; : : :19)
are distributed over disks 1 through 5 while disk 6 only contains spare pages (S). Only the five first
pages on each disk is shown. This pattern is repeated for each group of five pages on the disks.

Disk

Block 1 2 3 4 5 6

0 P S 0 1 2 3

1 4 P S 7 8 9

2 10 5 P S 14 15

3 16 11 6 P S 21

4 22 17 12 13 P S

5 S 23 18 19 20 P

Figure 6.4: Distribution of spare (S), parity (P) and data pages (0; 1; 2 : : :23) over the disks of a RAID
level 5 with six disks and distributed spare pages.
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copying of the lost disk content after a failure since the spare becomes a data disk and the
replaced disk the new spare. After replacing the failed disk for an array using distributed
or parity sparing, the content must be copied back for the spare pages to be reclaimed,
resulting in copying each page twice for each disk failure.

6.2.2 RADD

The Redundant Array of Distributed Disks (RADD) is an application of RAID level 5 for
distributed systems being robust against site failures. RADD as described in [SS90] uses
G+ 2 sites including distributed spare capacity for reproduction of data lost due to a site
failure. It is also possible to construct a RADD with a single spare site or without any spare
at all.

For RADD each site corresponds to a disk in a RAID array. Each site consists of either a
single- or multiprocessor computer with one or more disks. The site is the unit of failure
and has independent failure modes from the other sites. In our terminology, each site is
considered logically to have a single node. If G sites are necessary to store the data without
any redundancy, G+ 1 are necessary for data and parity and G+ 2 for data, parity, and an
additional spare.

Since remote communication is relatively slow and has long latencies, [SS90] suggest that
data local to a site is allocated to disks on that site. Due to this the striping provided by
RAID is not efficient for RADD. Anyhow, in a transaction processing environment striping
is of less importance, but locality is a more important aspect. Many transaction processing
applications have good data locality and can utilize this, but in this evaluation we choose
not to consider this.

For the storage efficiency to be good, the number of sites should be high. With sparing the
number of sites must be three or higher. Four sites give an efficiency of 50% and eight sites
have a respectable 75%. For good efficiency numbers the high required number of sites is
a serious cost penalty. Even if the computer hardware at each site might be priced low, the
cost of establishing and maintaining this number of sites will be prohibitively expensive for
most organizations. Also remember that it is not possible to fake this by placing multiple
sites on the same location since they will be exposed to disasters. If this is done, a disaster
will possibly knock out several logical sites making it impossible to mask the error and do
self repair.

During self repair after a failure a RADD system is exposed to a massive amount of stress.
This stress origins from the following extra work that has to be done during repair:

Transaction service: Some of the transactions will try to access pages on the lost site which
are not reconstructed yet. These transactions will have to wait for those pages to be
reconstructed. Even though the reconstruction can be initiated immediately, this
results in G disk accesses where at least G � 1 are on remote sites. This involves
virtually all sites and will probably slow down all transactions executed on the
system.

Repair disk I/O: To do repair all data and parity pages, except those on the failed site, have
to be read. Each site will have to read all data and parity pages on that site and ship
them to the site having the spare pages. For the dedicated spare site strategy this is
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the full disk capacity while the distributed spare strategy have to read a G
G+2 fraction

of the pages. This is respectively G and G�(G+1)
G+2 times the gross disk capacity of the

failed site. If G = 6 then the disk volume to read is respectively 6 and 5.25 times
the lost disk volume! In addition comes writing the reconstructed pages accounting
to respectively the full disk capacity of the spare site and a 1

G+2 fraction of the disk
capacity of each site.

Also, since the redundancy is based on physical units (pages), the system will also
have to reconstruct pages that are unused or storing file and database system over-
head (index pages, directories etc.). A logical replication strategy will only read
pages storing valid tuples and the target can recreate and add management data like
indices.

Repair communication: All the pages read have to be shipped to other sites where the
spare pages are located. The total data volume that has to be sent with inter-site
communication is equal to the data read, i.e. respectively G and G�(G+1)

G+2 times the
gross disk capacity of the failed site. This requires the communication network
among the sites to have an extra high capacity compared to the other declustering
strategies.

In addition to sending superfluous data like unused disk pages and system over-
head, also unused capacity in each disk page must be sent between sites. Popular
disk based data structures for transaction processing like B-trees [BM72] and hash-
ing [Knu73] have a storage efficiency down to 65%. This overhead has to be read
from disk independent of doing logical or physical replication, but can be removed
before sending data over the communication network. Physical replication has no
knowledge of the data structure inside a page and musr send complete pages only. 2

Even during normal operation the cost of physical replication can be costly. Remote
accesses are shipping full pages instead of only the requested tuple. Also, an access to a
tuple will (depending on access method) often require more than one disk access. More
than one disk access mean more than one remote access increasing the number of messages
sent to access one tuple.

Advantages of RADD are simplicity and the robustness against site failures. There is
no need for a global index which must be maintained consistently over the nodes of the
system. Instead, location of data can be computed from the logical page number alone. In
case of a site failure, the lost data can be reproduced without waiting for manual repair of
the site.

Table 6.4 gives a summary of the three different RADD strategy characteristics.

6.2.3 Multi dimensional redundancy (nD-RADD)

To increase the reliability further [SS90] suggests a 2-dimensional RADD (2D-RADD). This
is possible by forming a 2-dimensional array of sites where each row and each column in
the array are checked by independent parity checksums and with spare capacity. This can
be further extended into n dimensions (nD-RADD) by having parity checksum and spare

2By filling unused parts of a block with the binary value 0 and doing compression before sending pages this
overhead can be reduced.
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RADD

no spare dedicated spare distributed spare

Number of sites S G+ 1 G+ 2 G+ 2

Number of replicas R NA NA NA

Number of fragments F NA NA NA

Replica fanout Zr G G G+ 1

Takeover fanout Zt G G G+ 1

Refragmentation fanout Zf NA 1 G+ 1

Site fanout Zs NA 1 G+ 1

Storage efficiency G
G+1

G
G+2

G
G+2

Range stride �R depends on page size

Fragment stride �F G+ 1 G+ 1 G+ 2

Self repair no dedicated spare distributed spare

Planned repair no (yes) (yes)

Homogeneous yes no yes

Single site service no no no

Simplicity ++ ++ +

Table 6.4: RADD parameters. NA = not applicable.
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capacity for each dimension. This increases the reliability by adding more redundancy,
but unfortunately it also increases the required number of independent sites. For any
reasonable storage efficiency figures the number of sites are unreasonable high and will
therefore not be considered further.

6.3 Logical declustering

6.3.1 Mirrored declustering

Mirrored declustering (MD) is a well known declustering strategy used in several commercial
transaction processing environments. Physical MD is the distributed version of RAID
1 and is in [SS90] denoted the Read-One-Write-Both scheme (ROWB). Two fault-tolerant
commercial systems which are using physical MD are Stratus [Fre82] and Tandem Non-
Stop Systems [Kat78].

While RADD only could be used for physical declustering, MD can also be used for logical
declustering. Due to the major flaws with physical declustering which were found during
the analysis of RADD, we will only discuss logical MD. The variant of MD described here
is based on dedicated spare self repair. HypRa declustering is a MD based declustering
strategy with distributed spare self repair and is described separately in Section 6.3.4.

Multi-site MD uses one site for each replica of the of the DBMS (R = S) where each site
stores a complete replica of the database. Each site has the same number of nodes N s

excluding N 0
s spares. One node from each site form a replica group. The R nodes in the

replica group store the same Fn = R fragment replicas. One of the fragment replicas on a
node is a primary replica and the rest are hot stand-bys. There is one primary replica and
R� 1 hot stand-bys of each of the F = R �Ns fragments. This is illustrated in Figure 6.5.

If a node failure makes the primary fragment replicas stored on that node unavailable,
one of the hot stand-bys is transformed into a primary. Figure 6.6 shows that node n1

1 has
become unavailable and that fragment replica f 0

5 on node n0
1 has become a primary. If the

node failure is permanent and the node must be replaced, a spare node (node n1
4) replaces

the failed node in the replica group and the operating nodes in the group start to copy the
replicas to the new group member.

When the lost fragment replicas have been completely reconstructed the spare node takes
over as a normal member in the replica group and the primary task for one fragment is
moved to it from the node which has two primaries. This is shown in Figure 6.7. When
the failed node is replaced it becomes the new spare.

Table 6.5 gives a summary of MD with and without a spare node.

6.3.2 Interleaved declustering

Interleaved declustering (ID) is a logical declustering strategy that is used in the Teradata
DBC/1012 database computer [Ter85]. Originally it was used as a single site declustering
strategy but, as we will see, it can be extended into multiple sites. ID can only support two
replicas of the database. This description is based on [Su88] and [CK89].
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Figure 6.5: Mirrored declustering for two sites, each with five nodes. Each site has four data nodes
and one spare. R = S = 2, Ns = 4, N 0

s
= 1, F = 8, Fn = 2
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Figure 6.6: Mirrored declustering where node n1
1 has failed.
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Mirrored declustering

no spare dedicated spare

Number of sites S R R

Number of replicas R � 2 � 2

Number of fragments F R �Ns R �Ns

Replica fanout Zr 1 1

Takeover fanout Zt R� 1 R� 1

Refragmentation fanout Zf NA 1

Site fanout Zs NA 1

Storage efficiency 1
R

Ns

R(Ns+N 0

s)

Range stride �R 1 1

Fragment stride �F F F

Self repair no dedicated spare

Planned repair no yes

Homogeneous yes no

Singe site service yes yes

Simplicity ++ ++

Table 6.5: MD parameters.

89



Node n0
2

Node n0
3

Node n0
4 Node n1

4

Node n1
3

Node n1
2

Node n1
1

Site 1Site 0

Node n0
1

Node n1
0Node n0

0 f 0
4

f 1
1

f 1
7f 1

3

f 1
2

f 1
0 f 1

4

f 0
7

f 0
5

f 1
6

f 0
0

f 0
3

f 0
2 f 0

6

f 0
1

f 1
5

Figure 6.7: Mirrored declustering where node n1
1 has failed and a spare node n1

4 has taken over its
task.

For a system with N nodes and no spares, partition the relation into F = N � (N � 1)
fragments. Let there be two replicas of each fragment, one primary and one hot stand-by.
N�1 primary andN�1 hot stand-by fragment replicas are assigned to each of theN nodes.
The N � 1 primary fragment replicas that are assigned to a node have their corresponding
hot stand-by replicas spread over the other N � 1 nodes.

Table 6.6 illustrates the interleaving scheme for four nodes. A row in the table lists the
primary fragment replicas assigned to a node while a column lists the hot stand-by fragment
replicas. For example, the primary replica of fragment f7 is stored on node n1 and the hot
stand-by on node n2. Since the diagonal elements are empty, no nodes store both the
primary and hot stand-by replicas of the same fragment. This interleaving scheme can
be generalized for N nodes using the following procedure; draw an N � N matrix and
enumerate the rows and columns 0 to N � 1 respectively top to bottom and left to right.
Insert the N(N � 1) fragments into the matrix, one for each element, leaving the diagonal
empty.

A failed node in a system using mirrored declustering causes only one node (the mirror
node) to serve the load the failed node is unable to handle. ID ensures that the load from
a failed node will be distributed over all the remaining nodes, i.e. a takeover fanout equal
to Zt = N � 1.

Unfortunately, the number of fragments F soon becomes very high when the number of
nodes N increases since it is a function of order O(N 2), e.g. with 20 nodes the relation
must be partitioned into 380 fragments. The solution chosen by Teradata is to partition the
nodes into C clusters of Nc = d

N
C
e nodes. The interleaving scheme outlined above is used

inside each cluster giving a total number of fragments F = N(Nc � 1) and a replication
fanout of Zr = Nc � 1. The number of fragment replicas on each node Fn = 2(Nc � 1) is
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Table 6.6: Interleaving used by interleaved declustering to distribute 12 primary and hot stand-by
fragment replicas (enumerated f0 to f11) over the nodes in a four node system (enumerated n0 to
n3).
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Figure 6.8: Interleaved declustering for three clusters with four nodes in each cluster. The fragment
labeled c:p:h is located on cluster c with primary on logical node c:p and hot stand-by on logical
node c:h.
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Figure 6.9: Interleaved declustering where logical node 1:1 has failed.

a function of the cluster size only and not the total number of nodes. Figure 6.8 shows an
example of a 12 node system with three clusters.

In case of a node failure the remaining nodes inside the same cluster will share two
fragments with the failed node, one primary and one hot stand-by fragment replica. The
hot stand-by will take over as the primary giving an added load to each node inside the
cluster. Figure 6.9 illustrates this situation. Logical node 1:1 has failed and the primary role
for fragments 1:1:0, 1:1:2, and 1:1:3 has been moved to nodes 1:0, 1:2, and 1:3 respectively.
Figure 6.10 shows how a spare node replaces the failed node as node 1:1 and how data are
copied to this node.

Even though ID originally was designed as a single site declustering strategy it can easily
be extended to multiple sites. Let the number of sites be equal to the number of nodes in
each cluster, i.e. S = Nc, and assign one node from each cluster to each site. Based on the
configuration in Figure 6.8, nodes 0:0, 1:0, and 2:0 can be assigned to site 0, nodes 0:1, 1:1,
and 2:1 to site 1 etc. A sparing strategy can be achieved by allocating a suitable number
of spare nodes to each site. There must be at least S � 1 sites available for the system to
provide access to all data. This violates our assumption that one site should be sufficient
to provide database service.

An ID configuration with Nc = 2 is incidentally equivalent with mirrored declustering
with R = 2. Table 6.7 gives a summary of ID with and without spare nodes.

6.3.3 Chained declustering

Chained declustering (CD) is a declustering scheme developed by Hsiao and DeWitt [HD90].
With its low replication fanout (Zr = 2) the method is robust against double failures but
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Interleaved declustering

dedicated spare

single site multi site

Number of sites S 1 Nc

Number of replicas R 2 2

Number of fragments F CNc(Nc � 1) CNc(Nc � 1)

Replica fanout Zr Nc � 1 Nc � 1

Takeover fanout Zt Nc � 1 Nc � 1

Refragmentation fanout Zf 1 1

Site fanout Zs 1 1

Storage efficiency Ns

R(Ns+N 0

s)
Ns

R(Ns+N 0

s)

Range stride �R
1

Nc�1
1

Nc�1

Fragment stride �F C �Nc C �Nc

Self repair dedicated spare dedicated spare

Planned repair yes yes

Homogeneous no no

Single site service no no

Simplicity 0 -

Table 6.7: ID parameters.
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Figure 6.10: Interleaved declustering where logical node 1:1, physical node 5 has failed and a spare
node (physical node number 12) has taken over as logical node 1:1.

at the same time able to balance the load after a node failure evenly over the remaining
nodes. Originally the method was developed as a single site method but it is very simple
to extend to two sites. CD as described in [HD90] supports only two replicas of the data,
i.e. R = 2.

Single site CD is illustrated in Figure 6.11. With N nodes the relation is partitioned into N
fragments. Assume that range partitioning is used. Each node is assigned two consecutive
fragments so that it has one fragment in common with the previous node and one in
common with the next node. The first node overlap with the last one as shown in the
figure. Since range partitioning is used the two consecutive fragments will form a single
range of partitioning key values (not valid for the last node). The first of the two fragment
replicas assigned to a node becomes the primary and the second the hot stand-by.

In case of a node failure the partition ranges remain unchanged, but primary and hot
stand-by ranges inside each node are modified so that all nodes are responsible for primary
fractions of the same size. In normal mode a node is responsible for a 1

N
fraction of the value

range as primary and a 1
N

as hot stand-by. After a node failure the primary responsibility
becomes a 1

N�1 fraction and hot stand-by a N�2
N(N�1) fraction. This is shown in Figure 6.12.

The figure also shows what started out as six evenly sized fragments results in twelve
fragments, partially overlapping and with varying size. Locally at each node this can be
handled by storing the fragments into the same physical file. The refragmentation is then
reduced to redefining fragment borders and roles in the global index. For a high number of
nodes this can result in a major overhead, especially since in average 50% of the distribution
key value range must change role between primary and hot stand-by. While takeover for
the other declustering strategies only involved the fragments directly affected by a node
failure, CD has to update the information for all fragments. Also the switching between
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Figure 6.11: Fragment value range allocation for single site CD.
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Figure 6.12: Load balance for single site CD during node failure.
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Figure 6.13: Assignment of partitioning key value ranges for two site CD declustering over six nodes
in the normal mode (a) and in a node failure situation (b).

the primary and hot stand-by role is a complicated task demanding a synchronization
to achieve a takeover satisfying the ACID rules. This potentially long-lasting massive
takeover is critical since it can prolong the service unavailability caused by a node failure.

Even though it was assumed in the description above, CD is not limited to range partition-
ing. By using a hash formula h(k) mapping the partition key values k to a high number
of buckets B where B � N , the range of hash values h(k) can be used to partition the
relation.

A prerequisite for a declustering strategy resilient to site failures is that all data stored
on a site is replicated on at least one other site. In particular, for a declustering strategy
with only two replicas of the data, no site can store more than one replica. By studying
Figure 6.11 it is easy to see that even numbered nodes store a single, complete replica of
the relation. The same also applies to the odd numbered nodes. Thus by locating the even
numbered nodes on one site and the odd numbered ones on a second, chained declustering
becomes robust against site failures. Figure 6.13 illustrates CD for two sites both in the
normal mode and after a node failure.

The figure also shows how the original N fragments each can be partitioned into N � 1
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Chained declustering

no spare dedicated spare

Number of sites S 2 2

Number of replicas R 2 2

Number of fragments F

— normal operation 2Ns 2Ns

— one node failure 2Ns � 1 2Ns � 1

Replica fanout Zr 2 2

Takeover fanout Zt 2Ns � 1 2Ns � 1

Refragmentation fanout Zf 1 1

Site fanout Zs 1 1

Storage efficiency 1
2

Ns

2(Ns+N 0

s)

Range stride �R 1 1

Fragment stride �F F F

Self repair no dedicated spare

Planned repair no yes

Homogeneous yes no

Single site service yes yes

Simplicity 0 0

Table 6.8: CD parameters.

smaller fragments, in total F = N(N � 1) fragments. This technique avoids adjustment of
fragment limits during takeover after a failure and reduces the takeover process work. A
potential disadvantage with the prepartitioning strategy is that it can only handle a single
node failure. While the dynamic adjustment scheme can be repeated at the second and
third failure, the prepartition scheme can not assign equal sized ranges over the operating
nodes for more than one node failure. For a high number of nodes this is no serious
problem since the number of fragments also is fairly large (F = N(N � 1)). Giving some
nodes one more primary fragment than others makes little difference when each fragment
is small. The relative difference for the second failure is limited to N

N�1 and results in a
maximum skew of 10% and 2% respectively for 10 and 50 nodes.

CD only supports dedicated spare self repair. The two nodes adjacent to a failed node store
the replicas of the lost fragments and are the only one able to send them to the new node
during repair. Even though the transaction load is distributed even over the operating
nodes, the system performance will be limited by the two adjacent nodes both serving
transactions and reconstructing lost replicas.
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Figure 6.14: HypRa declustering after a node failure has been repaired.

6.3.4 HypRa declustering

HypRa declustering (HD) is a declustering strategy providing distributed sparing based on
mirrored declustering. While the logical declustering strategies described in the previous
sections have not been designed with multi-site declustering in mind, HD has. HD was
originally proposed in [Hva92, HST+91b].

In case of no node failures MD and HD are indistinguishable. Corresponding nodes at
each site store replicas of the same fragments (see Figure 6.5 on page 88). But, instead of
making an identical clone of the failed node onto a spare node after a node failure, the
fragments which have lost a replica are partitioned into Ns � 1 small subfragments and
distributed over the remainingNs�1 fragment groups. This is shown in Figure 6.14 where
there is no spare nodes. Node n1

1 has failed and the fragment replicas f 1
1 and f 1

5 are lost.
Fragment f1 is partitioned into the subfragments f1:0, f1:1, and f1:2 and fragment f5 into
f5:0, f5:1, and f5:2. Two replicas (one for each site) of each of the subfragments are created
and the content read from the available fragments in the same replica group. After the
copy is complete the original replicas are removed and the nodes in the same replica group
become unused and can be used as spares for later failures.

We will denote this strategy as global subfragmentation. Alternatively we can limit the
subfragmentation to the site of the failed node only, denoting it site subfragmentation.

One aesthetic argument for global subfragmentation is that it maintains the symmetry
offered by mirrored declustering. One node on one site stores the same data as one node
on the other sites. The fragmentation is identical over the sites. The one-to-one relationship
between fragments makes it easy to designate primary and hot stand-by tasks to fragment
replicas.
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A more important argument against site subfragmentation is that the fault-tolerance level
is reduced after self repair has been completed. Global subfragmentation has a replica
fanout Zr equal to one both in a normal system and when a failure has been repaired,
while site subfragmentation changes the fanout from one to Ns � 1. The increased fanout
means an increased probability for a double failure during self repair (see Chapter 8).

The penalty of the increased reliability offered by global subfragmentation is the work
required to create the subfragments on all sites and to recreate the original fragments when
the node hardware has been replaced. Site subfragmentation would have limited this work
to only the site where the node failure occurred.

Additional failures before the failed node has been replaced (without any spares available)
are handled identical to the first failure. In addition to partitioning normal fragments into
subfragments, subfragments are partitioned into subsubfragments etc. The only restricting
factor is the number of nodes at each site (they can not all being have failed) and the available
spare capacity on each node. As long as these resources are sufficient there is no reason for
being afraid of running out of dedicated spare nodes. While dedicated spare nodes offer
extra resources for self repair only, distributed sparing provides extra resources for both
self repair and handling of unpredicted performance peeks.

An option is to combine mirrored declustering (MD) with HD. Provide a few spare nodes
on each site and let the system use MD until there is no spares left on a site. When this
happens it can use HD on that site until the failed nodes have been replaced.

6.4 Summary

This chapter has described five existing multi-site declustering strategies: Redundant
Array of Distributed Disks (RADD), Mirrored Declustering (MD), Interleaved Declustering
(ID), Chained Declustering (CD), and HypRa Declustering (HD). RADD is a physical
declustering strategy based on the RAID disk architectures. The other four can be both
physical or logical but are only described as logical ones.

RADD, MD, and HD are the only schemes designed for multi-site declustering. The other
two are shown how they can be adopted to multi-site declustering. RADD and HD both
support a distributed spare self repair strategy, while the other can use a dedicated spare
strategy.

A high number of sites is required for the good properties of RADD and ID to be evident.
In practical cases the user can only afford to run at a few independent sites (two or three)
and the two strategies show few (or no) advantages in this case. CD on the other hand is
limited to two sites only.

As we will se in Chapter 8 the unavailability is to a great degree decided by the fanout
values. It is therefore desirable to have the opportunity to select optimal fanout values.
Unfortunately the described strategies have little degree of freedom with regard to this
since the fanouts mostly are decided by the number of nodes, sites, etc., or are constant.
The next chapter describes a class of declustering strategies and in more depth proposes
one strategy with a greater freedom with respect to the number of sites, replicas, and fanout
values. This strategy also allows self repair using both dedicated and distributed sparing.
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HypRa declustering

site subfragmentation global subfragmentation

Number of sites S R R

Number of replicas R � 2 � 2

Number of fragments F

— normal operation RNs RNs

— one node failure RNs=2R(Ns � 1) 2R(Ns � 1)

Replica fanout Zr

— normal operation 1 1

Takeover fanout Zt R� 1 R� 1

Refragmentation fanout Zf 1 � Zf � Ns � 1 1 � Zf � Ns � 1

Site fanout Zs 1 Ns

Storage efficiency 1
R

1
R

Range stride �R 1 1

Fragment stride �F F F

Self repair distributed spare distributed spare

Planned repair yes yes

Homogeneous yes yes

Single site service yes yes

Simplicity 0 -

Table 6.9: HD parameters.
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Chapter 7

Minimum Intersecting Sets
Declustering

This chapter consists of two main parts. It starts with describing and analyzing a family of
declustering strategies called Minimum Intersecting Sets Declustering. The discussion ends
up with the development of a novel declustering strategy called Q-rot Declustering.

7.1 General concepts

Minimum Intersecting Sets Declustering (MISD) is a family of declustering schemes meant
to alleviate the problems of the declustering strategies described in the previous chapter.

Similar to interleaved declustering, MISD fragments the base relation into a number of
fragments F that is much higher than the number of available nodes N , but contrary to
ID, MISD supports multiple sites better. Figure 7.1 illustrates a MISD scheme on a two site
configuration with N = 10 and F = 20.

The general concept of MISD is as follows:

Relations are partitioned into a (high) number of fragments. Each fragment is
initially created with one replica for each site. Inside a site, fragment replicas
are assigned evenly over the nodes. The fragments assigned to a node form a
fragment set. The sets should be assigned such that the maximum cardinality
of the intersection between any pair of fragment sets is minimized. In case of a
node failure the lost fragment replicas are moved to other fragment sets on the
same site.

The intersection of two fragment sets is the set of fragments the two sets have in common.
The intersection between two different fragment sets from the same site is always empty. If
a node fails, the nodes having intersecting fragment sets have to take over all work on the
common fragments. A smaller intersection means less common fragments and therefore
also less added load in a failure situation. By insisting on a “minimum largest intersection
cardinality” the worst case added load to a node is minimized, thus reducing the over-
capacity required to mask errors. The configuration in Figure 7.1 satisfy this condition.
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Figure 7.1: Minimal Intersecting Sets Declustering for a two site configuration with five nodes on
each site and 20 fragments.

The figure shows 20 fragments distributed over ten nodes and two sites. No nodes on site
s0 share more than one fragment with nodes on site s1.

Figure 7.2 shows that noden1
1 has failed and that fragment replicas f 0

5 and f 0
18 that originally

were hot stand-by replicas have to take over as primaries. Figures 7.3 and 7.4 show how
respectively distributed sparing and dedicated sparing self repair can be done. When the
failed node is replaced with a functioning one, the distributed sparing strategy has to copy
the replicas back to their original location. For dedicated spare this is not necessary and
the replaced node becomes the new spare (Figure 7.5).

MISD keeps one and only one replica of each fragment on each site ensuring that each site
can take over service alone. Reproduction of lost replicas inside the same site ensures that
this condition holds also after repair.

The definition of MISD above is general but not sufficient for practical use. For a given
number of nodes and sites it is not trivial to find an assignment that satisfy the requirements,
and if one is found there is no guarantee that this is the optimal one. To be usable there
must therefore exist a systematic approach for assignment of primary and hot stand-by
fragments to nodes, and for deciding the degree of fragmentation. Such a scheme will
be called an assignment scheme and should include reassignment rules for self repair and
node reintegration. Further on, the assignment scheme should give a fragment allocation
resembling the Hybrid-Range Partitioning Strategy [GD90] (described in Section 7.1.5) to
ensure scalable performance for a wide range of query types.
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Figure 7.2: Minimal Intersecting Sets Declustering after node n1
1 has failed and the hot stand-by

fragment replicas have become primaries.
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Figure 7.3: Minimal Intersecting Sets Declustering after node n1
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repair has been performed.

103



Site s1Site s0

Node n1
5Node n0

5

Node n1
4

Node n1
3

Node n1
2

Node n1
0

Node n0
4

Node n0
3

Node n0
2

Node n0
0

Node n1
1Node n0

1

f 1
6

f 1
5 f 1

18f 1
14

f 1
4

f 1
3

f 1
2

f 1
0

f 1
7

f 1
9

f 1
12f 1

8

f 1
11

f 1
10

f 1
16

f 1
15

f 1
19

f 1
17f 1

13

f 1
1 f 1

5 f 1
18f 1

14

f 1
1

f 0
0

f 0
1

f 0
2

f 0
3

f 0
4

f 0
5

f 0
6

f 0
7

f 0
8

f 0
9

f 0
10

f 0
11

f 0
19

f 0
18

f 0
17

f 0
16

f 0
15

f 0
14

f 0
13

f 0
12

Spare

Figure 7.4: Minimal Intersecting Sets Declustering with spare after node n1
1 has failed and self repair

has been performed.
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Figure 7.5: Minimal Intersecting Sets Declustering with spare after node n1
1 has failed, self repair

has been performed and node n1
1 replaced.
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7.1.1 Optimal fragment assignment

Assume a two site configuration with N0 nodes on site s0 and N1 on site s1. Let In0
a;n

1
b

be

the intersection of the fragment sets assigned to respectively node n 0
a on site s0 and node

n1
b on site s1. Since a given fragment will be assigned to only one node on site s 0 and only

one node on site s1, the fragment will be a member of one and only one In0
a;n

1
b
. The union

of all In0
a;n

1
b

will therefore be the set of all fragments and have a cardinality of F :

F = #
[
a;b

In0
a;n

1
b
=
X
a;b

#In0
a;n

1
b

where #A denotes the cardinality of set A. The largest intersection L for a fragment
assignment is written:

L = max
a;b

(#In0
a;n

1
b
)

A fragment assignment with the smallest possible L is optimal. Since L is greater or equal
to all #In0

a;n
1
b
, we see that:

F =
X
a;b

#In0
a;n

1
b
�
X
a;b

L = N0N1L;

thus,

F � N0N1L

Since L must be an integer we get:

L �

�
F

N0N1

�
(7:1)

This result gives the lower limit for L and tells us when we can stop looking for a better
fragment assignment. It will also be used later to show that assignment schemes are
optimal. This theoretical lower limit will be denoted L min.

Even though this result assumed two sites, it can be extended to any number of sites
greater or equal to two. Assume sx and sy are the sites with the lowest number of nodes.
Applying Equation 7.1 usingNx andNy gives the theoretical “minimum largest intersection
cardinality” Lmin(x;y) for that site pair. Since Nx and Ny are the smallest site sizes, no other
pair of nodes has a larger minimum L, thus Lmin(x;y) = Lmin applies to the whole multisite
configuration.

It should be noted that Lmin is a theoretical lowest value for L and it is not guaranteed that
it actually exists any fragment assignment that has L = Lmin.

The “minimum largest intersection cardinality” requirement ensures optimal load balance
in case of failure. Near optimal load balance can in most cases be “good enough” and makes
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Figure 7.6: Three alternative assignment schemes for Minimum Intersecting Sets Declustering for
dual site configurations. Shaded fragment numbers denote primary replicas, unshaded are hot
stand-bys.

heuristic assignment schemes sufficient. We will now describe three optimal assignment
schemes for two site configurations which assume that the degree of fragmentation can be
chosen without restrictions. It is assumed that both sites have the same number of nodes
when no nodes has failed. The three assignment schemes are illustrated in Figure 7.6.

The three assignment schemes distribute the fragments identically on site s 0. In Figure 7.6
the fragments are enumerated from 0 and upwards. The assignment for each site can be
viewed as a matrix where the rows denote the fragments assigned to the same node. If
a sequence preserving partitioning scheme is used, the fragments should be enumerated
based on increasing partitioning key values. The fragments are then assigned to nodes
by a round-robin scheme. What separates the assignment schemes is how fragments are
assigned to the nodes on site s1, how primaries and hot stand-bys are assigned, and the
degree of fragmentation.

7.1.2 Transposed Matrix (TM)

Visually TM can best be illustrated by transposing a matrix (thereby the name). This
analogy can easily be seen by studying Figure 7.6. Since the sites have the same number of
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nodesNs, each node s0 must storeNs fragments, one for each node on site s1. This requires
that relations are fragmented into F = Ns

2 fragments.

TM can also be generalized to F = k(Ns
2) fragments where k is a positive integer. The

fragments are divided into groups of Ns
2 fragments where each group can be assigned as

described above.

It is easy to verify that TM is an optimal assignment scheme. Using Equation 7.1 we get:

L �

�
F

N0N1

�
=

&
k(Ns

2)

Ns
2

'
= k

The optimal value for L is therefore k. Since the assignment on one site is a transposition of
the assignment on the other site for each of the k groups of fragments, each node on the first
site has k fragments in common with any node on the other site. The largest intersection
therefore becomes k which is equal to the optimal value, i.e. TM is an optimal assignment
scheme.

Primaries and hot stand-bys are assigned in a checkerboard pattern. This is possible due
to the transposition symmetry.

7.1.3 Rotated Columns (RC)

RC assigns fragments to nodes at site s1 in a round-robin fashion similar to the assignment
for site s0, except that the start node is shifted one node each time a column fills up. On
Figure 7.6 it visually looks like the columns are rotated one step down relative to the
previous column.

Primaries and hot stand-bys are assigned by letting fragments in alternating columns have
the primary on site s0.

Section 7.2 will show that a generalization of RC is a MISD and therefore an optimal
assignment scheme.

7.1.4 Empty Diagonal (ED)

The ED assignment scheme is a specialization of RC suitable for distributed sparing. ED
assumes that the relation is split into F = kNs(Ns � 1) fragments. The fragments are
assigned round-robin at site s1, but for each Ns’th fragment one node is skipped starting
with the first node. By studying Figure 7.6 it is easy to see that RC and ED assigns fragments
identically just with another node enumeration at site s1 (node n1

0 becomes n1
1, n1

1 becomes
n1

2 and so on). The name of the assignment scheme can be explained by taking a look on
the fragment assignment shown on the figure. It appears to be a Ns by Ns matrix with an
empty diagonal. Primarys and hot stand-bys are assigned identically to RC.

When a node fails kNs fragment replicas are lost. Using distributed sparing each remaining
node is assigned k new fragments increasing the load with a fraction 1

Ns�1 . This ensures
an even load redistribution. Unfortunately this is only valid for the first failure at a site.
The example used in the beginning of this chapter and shown in Figure 7.1 through 7.5 is
actually an ED scheme and Figure 7.3 shows a dedicated spare reassignment.
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7.1.5 Discussion

The three assignment schemes are summarized in Table 7.1.

Transposed matrix Rotated columns Empty diagonal

F k(Ns
2) kNs kNs(Ns � 1)

N0(i) i mod Ns i mod Ns i mod Ns

N1(i) i div Ns (i + (i div Ns)) mod Ns (1 + i+ (i div Ns)) mod Ns

Primary replica site ((i mod Ns) + (i div Ns)) mod 2 (i div Ns) mod 2 (i div Ns) mod 2

Minimum �F 2 2(Ns � 1) 2(Ns � 1)

Average �F
4

kNs

+ 5
2 2Ns � 1+ 3

2Ns

2Ns � 1 + 3
2Ns

Table 7.1: Comparison of three assignment schemes for two site Minimal Intersecting Sets Declus-
tering. N0(i) and N1(i) is the mapping function from fragment number i to node number on
respectively site s0 and site s1. �F is the fragment stride. Ns is the number of nodes on each site.

Hybrid-Range Partitioning

The Hybrid-Range Partitioning Strategy (HRPS) [GD90] ensures efficient execution of both
exact match, small range, and long range queries on the partitioning key through parti-
tioning the relation into a number of fragments which are independent of the available
number of nodes in the system. Small relations will be partitioned into few fragments
and large into many. For large relations the strategy can end up with a fragmentation
degree which is much higher than the number of nodes. Queries accessing many tuples
(long range queries) should be distributed over as many nodes as possible to get a high
degree of parallelism. The degree of parallelism must be traded against the high startup
and synchronization cost for each node involved in the query [CABK88, GD90]. Queries
accessing just a few tuples (exact match and small range queries) should therefore only
involve one or a few nodes.

Since MISD also can handle a varying number of fragments (e.g. RC), it is possible to
achieve the same efficiency as for HRPS for large relations. Long range queries must access
all fragments with tuples mapping into the partitioning key value range specified by the
query. To get the desired degree of parallelism these fragments should be distributed
evenly over as many different nodes as possible. This is not the case if neighbor ranges,
or even worse, several consecutive ranges, are assigned to one and the same node. A
measure for the quality of an assignment is the fragment stride (�F ). The optimal fragment
stride is the number of active nodes in the system S �Ns. Since the assignment can neither
be symmetric (equal on all sites) nor regular (repeating the same assignment pattern) the
fragment stride will vary depending on the fragment range we choose to start counting at.
The minimum fragment stride given in Table 7.1 is the worst case value while the average
value gives the overall quality of the assignment scheme.

Figure 7.7 shows how the three different assignment schemes distribute partitioning key
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Figure 7.7: Range allocation for the three assignments schemes when range partitioning is used.
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value ranges over the nodes when range partitioning is used. It is easy to see that TM
is bad for long range queries. Although site s0 has an ideal assignment, i.e. an internal
fragment stride equal to the number of nodes Ns, site s1 store five consecutive fragments
on each of the five nodes. RC and ED does not have this flaw and the average stride is
close to the optimal value.

An alternative metric is range stride denoted �R which expresses the fraction of the par-
titioning key value range which can be selected without picking more than one fragment
from the same node. The relationship between range stride and fragment stride is:

�F = �RF

Access method considerations

A large number of fragments also means many entries in the global index. Since the global
index is replicated over all transaction executing nodes it can be rather expensive to store
and maintain.

Locally on each node we can choose between storing the fragments from the same relation
into the same access structure (e.g. B-tree) or if we will use one access structure per fragment.
One advantage with one common access structure is a minimum of node internal files.
Sequential accesses and range queries only need to handle a single file. In combination
with a hash based partitioning scheme and using an access method keeping records sorted
locally on the node we can also scan the node local fragments without having to keep track
of the position concurrently in several files. It is also easier to change lower and upper
fragment borders dynamically by just adjusting the border values.

However, separate access structures for each fragment makes it easier to reorganize the
system, e.g. by moving a full fragment from one node to another. If the fragment is merged
with several others it might be required to scan much more tuples than necessary.

7.2 Q-rot declustering

This section will formally present the rotated columns assignment scheme (RC) generalized
for an arbitrary number of sites (i.e. arbitrary number of replicas). The description will
show the remapping strategy for self repair and how to efficiently assign fragment replicas
to nodes, both in the case of absence of failures, during self repair, and after self repair has
been completed.

7.2.1 Description

The name of Q-rot declustering is a shorthand for quotient rotation. Each site is assigned a
rotation quotient. When all nodes at a site have been assigned a fragment, the assignment
of fragments starts at a node shifted the number of steps decided by the quotient. RC uses
quotients equal to 0 for site s0 and 1 for site s1.

Q-rot (QD) is characterized by the following parameters:
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S Number of sites
Ns Number of active nodes per site
N 0
s Number of dedicated spare nodes per site

Zr Replica fanout, 1 � Zr � Ns

q0 : : : qS�1 Rotation quotients for each site, 0 � qx < Ns

In the normal state there is one replica of the database stored on each site, i.e. R = S. At
each site the database replica is declustered overN s nodes (same for all sites) with a replica
fanout of Zr. Note that the fanout can not be larger than the number of active nodes at
each site, i.e. Zr � Ns. The table is partitioned into F = Ns � Zr fragments.

Each site sx is assigned a unique rotation quotient denoted qx where 0 � qx < Ns. Note that
in the general case any rotation quotient that can be written qx+ kNs where k is an integer,
are equivalent with a rotation quotient of qx.

Fragments fi are assigned to nodes at site sx with an assignment functionNx(i). The primary
replica function P(i) returns the site where the primary replica of fragment fi is located.

For QDNx(i) and P(i) are given by Equation 7.2 and 7.3 respectively.

Nx(i) = (i+ (i div Ns)qx) mod Ns (7.2)
P(i) = (i div Ns) mod S (7.3)

Example 7.1:

Assume a system with three replicas (R = S = 3), nine nodes at each site (Ns = 9), and a
replica fanout of six (Zr = 6). For site sx (x 2 f0; 1; 2g) use rotation quotient qx = x (e.g.
q2 = 2). Totally there will be 54 fragments (F = Ns � Zr = 9 � 6 = 54) and 162 fragment
replicas (F � R = 54 � 3 = 162) distributed over 27 nodes (Ns � S = 9 � 3 = 27). Figure 7.8
shows how the fragment replicas are assigned to each node. nx

i is node number i on site
sx. f ri denotes replica number r of fragment number i. The fragment replicas suffixed by
an asterisk (�) are the primary fragment replica.

2

7.2.2 Proof of minimal intersection

Theorem:

QD is a MISD iff Equations 7.4 and 7.5 hold between any two sites sx and sy in the system.

qx 6= qy (7:4)

gcd(jqx � qyj; Ns) �
Ns

Zr

(7:5)

2

Proof:
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Site 0 with q0 = 0

n0
0 f 0

0 � f 0
9 f 0

18 f 0
27� f 0

36 f 0
45

n0
1 f 0

1 � f 0
10 f 0

19 f 0
28� f 0

37 f 0
46

n0
2 f 0

2 � f 0
11 f 0

20 f 0
29� f 0

38 f 0
47

n0
3 f 0

3 � f 0
12 f 0

21 f 0
30� f 0

39 f 0
48

n0
4 f 0

4 � f 0
13 f 0

22 f 0
31� f 0

40 f 0
49

n0
5 f 0

5 � f 0
14 f 0

23 f 0
32� f 0

41 f 0
50

n0
6 f 0

6 � f 0
15 f 0

24 f 0
33� f 0

42 f 0
51

n0
7 f 0

7 � f 0
16 f 0

25 f 0
34� f 0

43 f 0
52

n0
8 f 0

8 � f 0
17 f 0

26 f 0
35� f 0

44 f 0
53

Site 1 with q1 = 1

n1
0 f 1

0 f 1
17� f 1

25 f 1
33 f 1

41� f 1
49

n1
1 f 1

1 f 1
9� f 1

26 f 1
34 f 1

42� f 1
50

n1
2 f 1

2 f 1
10� f 1

18 f 1
35 f 1

43� f 1
51

n1
3 f 1

3 f 1
11� f 1

19 f 1
27 f 1

44� f 1
52

n1
4 f 1

4 f 1
12� f 1

20 f 1
28 f 1

36� f 1
53

n1
5 f 1

5 f 1
13� f 1

21 f 1
29 f 1

37� f 1
45

n1
6 f 1

6 f 1
14� f 1

22 f 1
30 f 1

38� f 1
46

n1
7 f 1

7 f 1
15� f 1

23 f 1
31 f 1

39� f 1
47

n1
8 f 1

8 f 1
16� f 1

24 f 1
32 f 1

40� f 1
48

Site 2 with q2 = 2

n2
0 f 2

0 f 2
16 f 2

23� f 2
30 f 2

37 f 2
53�

n2
1 f 2

1 f 2
17 f 2

24� f 2
31 f 2

38 f 2
45�

n2
2 f 2

2 f 2
9 f 2

25� f 2
32 f 2

39 f 2
46�

n2
3 f 2

3 f 2
10 f 2

26� f 2
33 f 2

40 f 2
47�

n2
4 f 2

4 f 2
11 f 2

18� f 2
34 f 2

41 f 2
48�

n2
5 f 2

5 f 2
12 f 2

19� f 2
35 f 2

42 f 2
49�

n2
6 f 2

6 f 2
13 f 2

20� f 2
27 f 2

43 f 2
50�

n2
7 f 2

7 f 2
14 f 2

21� f 2
28 f 2

44 f 2
51�

n2
8 f 2

8 f 2
15 f 2

22� f 2
29 f 2

36 f 2
52�

Figure 7.8: Example on assignment of fragments to nodes using Q-rot declustering.
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Based on Equation 7.1 the cardinality of the minimal intersection of two different sites s x
and sy (i.e. x 6= y) can be written:

L �

�
F

NsNs

�
=

�
Ns � Zr

NsNs

�
=

�
Zr

Ns

�

Since the replica fanout can not be larger than the number of nodes at a site (i.e. 1� Z r � Ns)
we get:

L � 1

Hence, we will here show that L = 1 if 7.4 and 7.5 hold and therefore minimal intersection
exists.

Thus, if L = 1 we have:

8i; j j i 6= j ^Nx(i) = Nx(j)) Ny(i) 6= Ny(j) (7:6)

Equation 7.6 says that for all pairs of different fragments fi and fj that are assigned to the
same node on site x, they are assigned to two different nodes on site y. If this equation
does not hold L must be greater than 1. If Equation 7.6 is violated we can write:

Nx(i) = Nx(j) ^ Ny(i) = Ny(j)

which expands to:

(i+ (i div Ns)qx) mod Ns = (j + (j div Ns)qx) mod Ns (7.7)
^

(i+ (i div Ns)qy) mod Ns = (j + (j div Ns)qy) mod Ns (7.8)

The fragment numbers i and j can be written as respectively:

i = i0 + i00Ns and j = j0 + j00Ns

where 0 � i0; j0 < Ns and 0 � i00; j00 < Zr. Due to the division theorem (see for example
theorem 3-10 in [Gil76], page 83) there exist unique solutions for i 0; i00; j0, and j00. Also note
that:

i div Ns = (i0 + i00Ns) div Ns = (i0 div Ns) + i00 = i00

Using this alternative form for i we can rewrite Equation 7.7 and 7.8 into:

(i0 + i00Ns + i00qx) mod Ns = (j0 + j00Ns + j00qx) mod Ns

^

(i0 + i00Ns + i00qy) mod Ns = (j0 + j00Ns + j00qy) mod Ns

The i00Ns and j00Ns parts are both cancelled by the mod’s giving:
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(i0 + i00qx) mod Ns = (j0 + j00qx) mod Ns

^

(i0 + i00qy) mod Ns = (j0 + j00qy) mod Ns

The mod’s can be replaced by adding or subtraction Ns an unknown number of times to
one of the sides of the equations. Doing this we get:

(i0 + i00qx)� (j0 + j00qx) = (i0 � j0) + (i00 � j00)qx = kx �Ns (7.9)
^

(i0 + i00qy)� (j0 + j00qy) = (i0 � j0) + (i00 � j00)qy = ky �Ns (7.10)

where kx and ky are integers. By subtracting Equation 7.10 from Equation 7.9 we get:

(i00 � j00)(qx � qy) = (kx � ky)Ns (7:11)

Let dx;y = jqx � qyj and k = jkx � kyj. Equation 7.11 can then be written:

ji00 � j00j � dx;y = k �Ns (7:12)

Let 
 = gcd(dx;y; Ns) and set dx;y = 
 � d̂x;y and Ns = 
 � N̂c. Equation 7.12 then becomes:

ji00 � j00j � d̂x;y = k � N̂c (7:13)

Note that all the variables in Equation 7.13 must be integers. With this in mind and the fact
that d̂x;y and N̂c have no common factors, d̂x;y must be a factor of k. If we write k = d̂x;y � k

0

the equation simplifies to:

ji00 � j00j = k0 � N̂c (7:14)

Remember that qx 6= qy from the prerequisite in Equation 7.4 implying that jqx � qyj =
dx;y = 
d̂x;y 6= 0 so we are free to divide with d̂x;y.

By studying Equation 7.14 we see that there are two cases when the equation might hold
and which must be investigated further:

Case 1: ji00 � j00j = k0 = 0

Case 2: gcd(ji00 � j00j; N̂c) = N̂c

Assume that ji00 � j00j = 0, i.e. i00 = j00. Insert this into Equation 7.9:

(i0 � j0) + (i00 � j00)qx = i0 � j0 = kx �Ns (7:15)
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Since 0 � i0 < Ns and 0 � j 00 < Ns then�Ns < i0� j0 < Ns. Thus, the only integer solution
to Equation 7.15 is i0 = j0. But, since we assumed that i00 = j00 then i = j violating the i 6= j
requirement from Equation 7.6, i.e. Case 1 is impossible.

Case 2 demands that N̂c must be a factor of ji00 � j00j for Equation 7.14 to have an integer
solution. This means that N̂c � ji

00 � j00j. Knowing that 0 � i00 < Zr and 0 � j 00 < Zr we
find that 0 � ji00 � j00j < Zr, thus

N̂c � ji
00 � j00j < Zr (7:16)

Looking back to the prerequisite given by Equation 7.5 we have:

gcd(jqx � qyj; Ns) �
Ns

Zr


 �
Ns

Zr

Zr �
Ns



= N̂c

which contradicts with what we just found in Equation 7.16, i.e. Case 2 is impossible.

Since both case 1 and 2 are impossible when the prerequisites hold then L can’t be greater
than 1 and we can conclude that QD is a member of the MISD family.

2

7.2.3 Configuration rules

The practical consequences of this proof is that the number of nodes in each cluster, the
replica fanout and the rotation quotient must be carefully selected. The relationship given
by Equation 7.5 is not trivial and can not be applied directly. By investigating this equation
some practical rules have been developed which will assist the application of this new
declustering strategy. These rules are listed and explained below. It should be noted that
it is sufficient that only one of these rules is satisfied for Equation 7.5 to hold.

Rule 1:
IfNs is a prime, then Zr and the qx’s can be chosen without other restrictions than
that all the qx’s must be different.

If Ns is a prime number, then gcd(jqx � qyj; Ns) = 1 since both qx and qy are less than Ns.
This means that Equation 7.5 holds as long as Zr � Ns. Thus as long as Ns is a prime, then
there is no restrictions on the rotation quotients and the fanout. This rule obviously sets a
strict restriction on the number of nodes that the system can have compared with the other
declustering strategies.

Rule 2:
If Ns is a product of two primes Pl and Ph where Pl � Ph and Zr � Ph, then
jqx � qyj < Ph must hold for all pairs of sites (sx; sy).
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Since Ns is a product of the two primes Pl and Ph then gcd(jqx � qyj; Ns) 2 f1; Pl; Ph; Nsg.
If jqx � qyj < Ph then gcd(jqx � qyj; Ns) 2 f1; Plg. Thus as long as Pl � Ns

Zr
is true, then

Equation 7.5 holds. By manipulating this relation we get Zr �
Ns

Pl
= PhPl

Pl
= Ph.

Let q min and q max be the smallest and the largest rotation quotient respectively then
jqx � qyj � q max � q min holds for all pairs of sites (sx; sy). The maximum number of sites
supported is limited by the number of different rotation quotients. If all quotients between
q min and q max are assigned the maximum number of sites S max = q max � q min + 1. Thus
rule 2 can be rewritten to:

Rule 2’:
IfNs is a product of two primes Pl and Ph where Pl � Ph andZr � Ph then S � Ph
must hold.

Example 7.2 shows an application of rule 2.

Example 7.2:

Let Ns = 14 = 2 � 7. Then we can have Zr = 7 and qs 2 f0; 1; 2; 3; 4; 5; 6g. The maximum
number of sites is S = 7. Figure 7.9 shows the declustering of fragments over four sites
with rotation quotients of respectively 0, 3, 5, and 6. The fragments assigned to node n 0

0
are labeled with an asterisk (�) and it is easy to see that all these fragments are assigned to
different nodes on the three other sites.

2

Rule 3:
IfNs is a product of k primes, P1; P2; � � �Pk, wherePi � Pi+1 andZr � P2 �P3 � � �Pk,
then jqx � qyj < P2 must hold for all pairs of sites (sx; sy).

This is a generalization of rule 2. Since Ns is a product of primes then gcd(jqx� qyj; Ns) can
be written as a product of a subset of those primes. If jqx�qyj < P2, then gcd(jqx�qyj; Ns) 2
f1; P1g. Thus as long as P1 �

Ns

Zr
is true then Equation 7.5 holds. By manipulating this

relation we get Zr �
Ns

P1
.

Substituting the rotation quotients with the number of sites in rule 3 we get:

Rule 3’:
IfNs is a product of k primes, P1; P2; � � �Pk, wherePi � Pi+1 andZr � P2 �P3 � � �Pk,
then S � P2 must hold.

Rule 4:
If Ns is a product of primes Pi, then jqx � qyj < Pi must hold for all pairs of sites
(sx; sy) and all Pi’s.

Since jqx � qyj < Pi for all Pi then gcd(jqx � qyj; Ns) = 1. Thus 1 � Ns

Zr
and Zr � Ns. Since

this restriction already is inherent in the definition of replica fanout, rule 4 actually allows
Zr to be selected without restrictions.
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Site 0 with q0 = 0

n0
0 f0

0 � f0
14� f0

28� f0
42� f0

56� f0
70� f0

84�

n0
1 f0

1 f0
15 f0

29 f0
43 f0

57 f0
71 f0

85

n0
2 f0

2 f0
16 f0

30 f0
44 f0

58 f0
72 f0

86

n0
3 f0

3 f0
17 f0

31 f0
45 f0

59 f0
73 f0

87

n0
4 f0

4 f0
18 f0

32 f0
46 f0

60 f0
74 f0

88

n0
5 f0

5 f0
19 f0

33 f0
47 f0

61 f0
75 f0

89

n0
6 f0

6 f0
20 f0

34 f0
48 f0

62 f0
76 f0

90

n0
7 f0

7 f0
21 f0

35 f0
49 f0

63 f0
77 f0

91

n0
8 f0

8 f0
22 f0

36 f0
50 f0

64 f0
78 f0

92

n0
9 f0

9 f0
23 f0

37 f0
51 f0

65 f0
79 f0

93

n0
10 f0

10 f0
24 f0

38 f0
52 f0

66 f0
80 f0

94

n0
11 f0

11 f0
25 f0

39 f0
53 f0

67 f0
81 f0

95

n0
12 f0

12 f0
26 f0

40 f0
54 f0

68 f0
82 f0

96

n0
13 f0

13 f0
27 f0

41 f0
55 f0

69 f0
83 f0

97

Site 1 with q1 = 3

n1
0 f1

0 � f1
25 f1

36 f1
47 f1

58 f1
83 f1

94

n1
1 f1

1 f1
26 f1

37 f1
48 f1

59 f1
70� f1

95

n1
2 f1

2 f1
27 f1

38 f1
49 f1

60 f1
71 f1

96

n1
3 f1

3 f1
14� f1

39 f1
50 f1

61 f1
72 f1

97

n1
4 f1

4 f1
15 f1

40 f1
51 f1

62 f1
73 f1

84�

n1
5 f1

5 f1
16 f1

41 f1
52 f1

63 f1
74 f1

85

n1
6 f1

6 f1
17 f1

28� f1
53 f1

64 f1
75 f1

86

n1
7 f1

7 f1
18 f1

29 f1
54 f1

65 f1
76 f1

87

n1
8 f1

8 f1
19 f1

30 f1
55 f1

66 f1
77 f1

88

n1
9 f1

9 f1
20 f1

31 f1
42� f1

67 f1
78 f1

89

n1
10 f1

10 f1
21 f1

32 f1
43 f1

68 f1
79 f1

90

n1
11 f1

11 f1
22 f1

33 f1
44 f1

69 f1
80 f1

91

n1
12 f1

12 f1
23 f1

34 f1
45 f1

56� f1
81 f1

92

n1
13 f1

13 f1
24 f1

35 f1
46 f1

57 f1
82 f1

93

Site 2 with q2 = 5

n2
0 f2

0 � f2
23 f2

32 f2
55 f2

64 f2
73 f2

96

n2
1 f2

1 f2
24 f2

33 f2
42� f2

65 f2
74 f2

97

n2
2 f2

2 f2
25 f2

34 f2
43 f2

66 f2
75 f2

84�

n2
3 f2

3 f2
26 f2

35 f2
44 f2

67 f2
76 f2

85

n2
4 f2

4 f2
27 f2

36 f2
45 f2

68 f2
77 f2

86

n2
5 f2

5 f2
14� f2

37 f2
46 f2

69 f2
78 f2

87

n2
6 f2

6 f2
15 f2

38 f2
47 f2

56� f2
79 f2

88

n2
7 f2

7 f2
16 f2

39 f2
48 f2

57 f2
80 f2

89

n2
8 f2

8 f2
17 f2

40 f2
49 f2

58 f2
81 f2

90

n2
9 f2

9 f2
18 f2

41 f2
50 f2

59 f2
82 f2

91

n2
10 f2

10 f2
19 f2

28� f2
51 f2

60 f2
83 f2

92

n2
11 f2

11 f2
20 f2

29 f2
52 f2

61 f2
70� f2

93

n2
12 f2

12 f2
21 f2

30 f2
53 f2

62 f2
71 f2

94

n2
13 f2

13 f2
22 f2

31 f2
54 f2

63 f2
72 f2

95

Site 3 with q3 = 6

n3
0 f3

0 � f3
22 f3

30 f3
52 f3

60 f3
82 f3

90

n3
1 f3

1 f3
23 f3

31 f3
53 f3

61 f3
83 f3

91

n3
2 f3

2 f3
24 f3

32 f3
54 f3

62 f3
70� f3

92

n3
3 f3

3 f3
25 f3

33 f3
55 f3

63 f3
71 f3

93

n3
4 f3

4 f3
26 f3

34 f3
42� f3

64 f3
72 f3

94

n3
5 f3

5 f3
27 f3

35 f3
43 f3

65 f3
73 f3

95

n3
6 f3

6 f3
14� f3

36 f3
44 f3

66 f3
74 f3

96

n3
7 f3

7 f3
15 f3

37 f3
45 f3

67 f3
75 f3

97

n3
8 f3

8 f3
16 f3

38 f3
46 f3

68 f3
76 f3

84�

n3
9 f3

9 f3
17 f3

39 f3
47 f3

69 f3
77 f3

85

n3
10 f3

10 f3
18 f3

40 f3
48 f3

56� f3
78 f3

86

n3
11 f3

11 f3
19 f3

41 f3
49 f3

57 f3
79 f3

87

n3
12 f3

12 f3
20 f3

28� f3
50 f3

58 f3
80 f3

88

n3
13 f3

13 f3
21 f3

29 f3
51 f3

59 f3
81 f3

89

Figure 7.9: An example of assignment of fragments to four sites using Q-rot declustering.
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Substituting the rotation quotients with the number of sites in rule 4 we get:

Rule 4’:
If Ns is a product of primes Pi, then S � Pi must hold for all Pi’s.

Rule 4’ leads to an important result: For two site configurations any number of nodes and
any replica fanout can be used. This is due to the fact that the smallest existing prime is 2.

Rule 5:
Choose Ns such that Ns � jqx � qyjZr holds for all pairs of sites (sx; sy).

Since the greatest common divisor between any two positive integers must be less or equal
to both integers we can write gcd(jqx � qyj; Ns) � jqx � qyj. Thus if jqx � qyj �

Ns

Zr
holds,

then also gcd(jqx � qyj; Ns) �
Ns

Zr
must be true.

The same rule as a function of number of sites S becomes:

Rule 5’:
Choose Ns such that Ns � (S � 1)Zr holds.

Thus for a given configuration of S sites and a fanout Zr the minimum intersecting set
property holds as long as the number of nodes in each cluster is greater than or equal to
(S � 1)Zr. Example 7.3 demonstrates the use of rule 5.

Example 7.3:

Let Zr = 8 and S = 3 then there must be at least (3 � 1) � 8 = 16 nodes at each site. Note
that rule 4 gives no absolute minimum value of Ns since there might exist some values
that still satisfy Equation 7.5. When Ns 2 f11; 13g then Ns is a prime and rule 1 holds (also
2,3,5, and 7 are primes but remember that Zr � Ns). When Ns 2 f9; 15g then rule 4 can be
used.

2

The need for the rules certainly makes it more complicated to use QD compared to the
other declustering schemes, but for most practical purposes a system designer should be
able to find a rule that suits his or her use.

7.2.4 Masking failures

To be able to mask node and site failures we need to know which of the hot stand-
by fragment replicas that should take over for the unavailable primaries. For two site
systems this is trivial, just select the second replica. For higher number of replicas we
need an alternative primary replica function P 0(i). The goal for this function is to spread
the masking work over the nodes sharing fragments with the failed node. One possible
solution is to divide each of the lost fragments in R � 1 non-overlapping subfragments.
The nodes of one of the sites sharing fragments take the first subfragment, those on the
second site takes the second subfragment etc.

This strategy results in that the takeover fanout gets the value Z t = (R � 1)Zr.
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function mapnode(fragno, site)
begin

avail Ns;
for vnode 0 to avail-1 do

nodemap[vnode] vnode;
end do;
forever do

vnode (fragno + (fragno div N
s
) � rq[site]) mod avail;

if state(nodemap[vnode])=up then
return nodemap[vnode];

end if;
avail avail� 1;
if avail = 0 then

return -1;
end if;
nodemap[vnode:avail-1] nodemap[vnode+1:avail];

end do;
end;

rq[s] = rotation quotient for site ’s’
state(n) = state of node, ’up’ or ’down’
avail = number of nodes believed to be ’up’
nodemap = array of nodes believed to be ’up’

Figure 7.10: Pseudocode for mapping a fragment replica to a node when a distributed spare is used.

7.2.5 Self repair

Self repair for dedicated sparing is trivial. The refragmentation fanout Zf is equal to 1
since all data is reproduced on a single node. The site fanout Zs is also 1 since data is
only reorganized on the site where the node failed. However, note that the nodes must be
given logical node numbers for the assignment functionNx(i) to work after a node failure
followed by repair.

The problem with dedicated sparing is that it is possible to run out of spare nodes. If
this happens distributed sparing can be used as a fallback strategy until nodes have been
replaced.

For dedicated sparing it is necessary to remap fragment replicas assigned to failed nodes
to operating ones. Figure 7.10 shows pseudocode for a function implementing such a
remapping. It works by trying to assign a fragment as if no nodes are down. If the resulting
node is down, the node is removed from the list of known nodes and the remapping is
retried with one node less. This is repeated until an operating node is found. This function
is idempotent with respect to node failures, i.e. nodes can fail and be repaired independent
of each other without needing to move other fragments than those directly affected. Such
a remapping can potentially reduce both fanout and stride values.
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7.2.6 Fragment stride

The fragment stride�F depends on the difference between the rotation quotients used and
varies between (S � 1)Ns + 1 and SNs.

Masking node failures means that the primary function for some fragments moves to other
nodes and sites. This will to some degree reduce the stride. Masking site failures is more
serious since so many nodes disappear at the same time reducing the average fragment
stride with at least the number of nodes on a site.

A dedicated spare self repair strategy will not reduce the stride, but if a distributed spare
strategy is used, the regular assignment scheme will be distorted and the stride reduced.
This penalty is of the same magnitude as masking node failures.

7.3 Summary

Table 7.2 show a summary of the parameters for QD both using distributed and dedicated
spare.

As the table shows, Q-rot Declustering gives the system designer a wide range of options
on how to dimension the system. It supports both types of self repair and can support
planned repair and single site service. The most negative aspect is the restrictions set by
the configuration rules which complicates the use of the scheme.

Up to now we have not looked into the availability offered by the different declustering
strategies. This has been left to the next chapter which will look on different types of errors
and provide analytic models for computing the unavailability when the system parameters
are given.
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Minimum Intersecting Sets Declustering

Q-rot Declustering

dedicated spare distributed spare

Number of sites S R R

Number of replicas R � 2 � 2

Number of fragments F Ns � Zr Ns � Zr

Replica fanout Zr 1 � Zr � Ns 1 � Zr � Ns

Takeover fanout Zt (R� 1)Zr (R � 1)Zr

Refragmentation fanout Zf 1 1 � Zf � Zr

Site fanout Zs 1 1

Storage efficiency Ns

R(Ns+N 0

s)
1
R

Range stride �R
Ns(R�1)+1

F
� �R �

NsR
F

Ns(R�1)+1
F

� �R �
NsR
F

Fragment stride �F Ns(R� 1) + 1 � �F � NsR Ns(R� 1) + 1 � �F � NsR

Self repair dedicated spare distributed spare

Planned repair yes yes

Homogeneous no yes

Single site service yes yes

Simplicity 0 -

Table 7.2: MISD parameters.
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Chapter 8

An unavailability analysis

There are various reasons for service unavailability. For the user of the service the reason is
of less importance whether it is a software bug or an earthquake. The service is unavailable
and the user can not get his or her work done. For the system designer this is different. If
he or her knows the types of events that potentially can cause outage and the frequency of
those events, precautions can be taken for a suitable set of these type of events so the desired
availability can be reached. But even though precautions are taken, it is not possible to
achieve 100% continuous service availability. All methods for fault-tolerance only reduce
the probability of a failure and do not fully eliminate it.

This chapter looks into some of the reasons for unavailability for a fault-tolerant database
server with a self repair capability and analyze their contribution to the total system
unavailability. The chapter also looks into design options and the consequence these have
to the duration and frequency of the unavailability.

The unavailability reasons considered are:

Node-node double-faults (UNN ) Simultaneous single node failures causing the loss of all
replicas of one or more fragments.

Site-node double-faults (USN ) Node failures following a site failure causing the loss of all
replicas of one or more fragments.

Node-site double-faults (UNS) A site failure occurring while a set of nodes are down
causing the loss of all replicas of one or more fragments.

Site-site double-faults (USS) Simultaneous site failures causing the loss of all fragment
replicas.

The total system unavailability is a sum of the unavailability caused by these reasons.
Thus:

U = UNN + USN + UNS + USS (8:1)

This model does not model communication failures and the risk of running out of spare
capacity. Most communication failures can be described as either site or node failures and
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are in this way incorporated into the model. We assume that spare capacity is sufficiently
large for the replacement frequency used so that the probability of running out of spares
are negligible. These types of failures will not be discussed further in this work.

Note that the unavailability is based on the loss of data and the reconstruction of lost data.
We do not consider transient errors causing a short temporary loss of database service.
An OS reboot or DBMS restart will not cause any database data to be permanently lost if
normal log and recovery mechanisms are used. If a node storing the only reminding replica
of a fragment is rebooted, the fragment is unavailable only until the reboot has finished and
DBMS recovery is complete. On the other hand, if the reboot causes the database content
on that node to be corrupted we have a permanent data loss which the model copes with.

Previous unavailability analysis of declustering strategies include [CK89] and [HD91].
Both restrict their study to node-node double-faults and study some declustering strate-
gies specifically. [CLG+94] analyses the mean time to data loss for RAID architectures
incorporating the probability of page, disk, and system errors.

This work will take a more general approach and provides a tool for evaluating declustering
strategies in general based on their characteristic parameters: Number of sites, nodes,
spares, replicas, fragments, and fanout values.

This chapter is divided into two sections. The first analyzes the unavailability caused by
node-node double-faults. The second looks briefly into unavailability caused by combina-
tions of site failures. The analyses are done in a transaction processing context.

8.1 Node-node double-faults

It is mainly with respect to node-node double-fault unavailability that the declustering
strategies differ from each other. This section will therefore make much effort into ana-
lyzing the effects the characteristic parameters of the declustering strategies have on the
unavailability. This does not only make it possible to choose the best strategy but also
to find the most desirable values which again might lead to the development of new and
improved methods.

But, before we can do this analysis we need to develop a failure model reflecting the system
behavior. Below this is done in two steps. First a detailed model is developed for a two site
configuration. The second step is to develop a simplified more general multi site model
which is verified by comparing it with the detailed two site model.

8.1.1 Two site failure model

Figure 8.1 shows the state diagram for a DBMS server withN nodes and no dedicated spare
nodes storing two replicas of all data and implementing self repair of lost replicas. The
system is in state Si where 0 � i < N , when at least one replica of all data still is available
and fragment replicas lost by i node failures not have been reproduced by self repair. If
both replicas of one or more fragments are lost due to node failures the system is in state
Sa and is considered unavailable. Symbols used in this chapter are listed in Appendix A.

The failure model does the following assumptions:
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Figure 8.1: Failure state transition diagram for node failures.
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� All node failures are causing permanent loss of data, i.e. there is no unavailability
caused by transient node failures. A transient failure can be handled by doing a fast
restart and recovery and no data will be lost.

� Independent nodes have independent failure modes. Nodes sharing common frag-
ments are not independent. The failure of one node will only change the probability
of a failure for the nodes sharing common fragments with the failed node. This
accounts for correlated errors between nodes storing replicas of the same fragment.

� Self repair is performed one node after another. After a node failure, self repair is
not started before any ongoing repair has completed. This avoids overloading nodes
and communication network with concurrent reproduction of lost fragment replicas.

� Node failure, replica repair, and system recovery is all exponentially distributed
with parameters respectively �n, �r, and �a. (Replica repair times will in practice
be relatively constant. Even though this violates the assumption we will use it for
simplicity reasons.) When a node has failed and yet not repaired, the failure rate for
nodes sharing common fragments with it increases by a factor G to G�n.

� A node failure causing double failure is exponentially distributed with parameter
�
(i)
x when the system is in state Si.

� The tuples are uniformly distributed over the nodes.

� The load is uniformly distributed over the database tuples.

� The load is uniformly distributed over time.

In a stable state, the sum of the intensities of transitions into a state is equal to the intensities
of transitions out of the same state. Hence we can write:

N�np0 = �rp1 + �apa

(((N � 1)�n � �(1)x ) + �(1)x + �r)p1 = N�np0 + �rp2

(((N � 2)�n � �(2)x ) + �(2)x + �r)p2 = ((N � 1)�n � �(1)x )p1 + �rp3

(((N � 3)�n � �(3)x ) + �(3)x + �r)p3 = ((N � 2)�n � �(2)x )p2 + �rp4

...
(�(N�1)

x + �r)pN�1 = (2�n � �(N�2)
x )pN�2

�apa = �(1)x p1 + �(2)x p2 + �(3)x p3 + � � �+ �(N�1)
x pN�1

pi denotes the probability of being in state S i. These equations can be simplified into:

N�np0 = �rp1 + �apa

((N � 1)�n + �r)p1 = N�np0 + �rp2

((N � 2)�n + �r)p2 = ((N � 1)�n � �(1)x )p1 + �rp3

((N � 3)�n + �r)p3 = ((N � 2)�n � �(2)x )p2 + �rp4
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...
(�(N�1)

x + �r)pN�1 = (2�n � �(N�2)
x )pN�2

�apa = �(1)x p1 + �(2)x p2 + �(3)x p3 + � � �+ �(N�1)
x pN�1

Even though this is a set of N + 1 equations with N + 1 unknowns (pi; 0 � i < N and pa),
there exists no distinct solution. The additional knowledge that makes the system solvable
is the fact that the sum of the probabilities of being in any state must be 1, i.e.:

(
N�1X
i=0

pi) + pa = 1 (8:2)

By replacing one of the equations in the system with Equation 8.2 and writing it on matrix
form we get:

2
66666666666664

�N�n �r 0 0 0 0 �a

N�n �(N�1)�n��r �r 0 0 0 0

0 (N�1)�n��
(1)
x �(N�2)�n��r �r � � � 0 0 0

...

0 0 0 0 2�n��
(N�2)
x ��

(N�2)
x ��r 0

1 1 1 1 1 1 1

3
77777777777775

2
66666666666664

p0

p1

p2

...

pN�1

pa

3
77777777777775
=

2
66666666666664

0

0

0

...

0

1

3
77777777777775

(8:3)

The failure intensities �(1)x ; �
(2)
x ; �

(3)
x ; : : : depend on the node failure rate �n, the error corre-

lation factor G, and the declustering strategy used. If only the replica fanout Z r is known
about the declustering strategy, we can compute only �

(1)
x exactly. If more than one node

has failed there is a probability that the failed nodes store replicas of fragments which also
have replicas on a common node, thus:

�
(1)
x = ZrG�n

ZrG�n � �
(2)
x � 2ZrG�n

ZrG�n � �
(3)
x � 3ZrG�n
...

(8:4)

The size and complexity of Equation 8.3 makes it difficult to understand the overall proper-
ties of the system. If we assume that N�n � �a and NG�n � �r it is reasonable to believe
that the system in Figure 8.1 will spend most of its time in state S 0. The probability of being
in any of the other states Si; i > 0, will rapidly decrease with increasing i. We can therefore
simplify the system by assuming that i never exceeds a number e. If a failure occurs while
in state Se we can assume a system failure and go into state Sa. This is a conservative
approach since the system goes to a state where the system is unavailable instead of one
where it is available. Figure 8.2 shows the transition diagram where a maximum of three
failed nodes is allowed, i.e. e = 3. We have also substituted the maximum values given by
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Figure 8.2: Failure state transition diagram assuming maximum three concurrent node failures. The
intensity of transitions from state S3 to state Sa is given by the aggregate failure intensity of the
remaining (N � 1) nodes.
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Equations 8.4 for �(i)x . Equation 8.5 can be used to compute the probability vector for the
states given by Figure 8.1.

2
666666666666664

�N�n �r 0 0 �a

N�n �(N�1)�n��r �r 0 0

0 (N�1�GZr)�n �(N�2)�n��r �r 0

0 0 (N�2�2GZr)�n �(N�3)�n��r 0

1 1 1 1 1

3
777777777777775

2
666666666666664

p0

p1

p2

p3

pa

3
777777777777775

=

2
666666666666664

0

0

0

0

1

3
777777777777775

(8:5)

The general solution for the state probability vector can be found through substitution and
the symbolic equations for each probability p are listed in Appendix B on page 159. The
form of these equations is a bit too complex to work with and understand and we need to
find approximations that give answers good enough.

Assuming that NG�n � �r and N�n < �a most of the factors in the general solution
of Equation 8.5 can be eliminated. Appendix B lists the approximate equations for the
probabilities pi.

When is the system unavailable?

The system can under no circumstances provide full availability when the system is in
state Sa, since all replicas of some data have been lost. If the system does not provide
on-line service during self repair the system is available only when in state S 0. This repair
strategy will be called off-line self repair. The opposite strategy which is called on-line self
repair provides service during repair and results in only state S a being an unavailable state.

Unavailability is therefore the probability of any time being in a state when the system is
unavailable. For off-line self repair the unavailability becomes after the approximate value
for 1� p0 found in Appendix B has been inserted:

UNN; off-line = pa +
N�1X
i=1

pi = 1� p0 =
�nN

�r
(8:6)

and using on-line self repair we get

UNN; on-line = pa =
�2
nGZrN

�a�r
(8:7)

If all parameters are kept unchanged, then on-line self repair would always offer better
availability than off-line self repair, but since on-line self repair must use some of its
resources processing user transactions, less is available to self repair. Thus, the repair is
slowed down, reducing the repair intensity�r, and therefore increasing unavailability. This
effect and other factors influencing the unavailability are described in the next section.
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8.1.2 General multi site failure model

Equations 8.6 and 8.7 are valid for only two sites. The same methodology can also be
used for three, four or even more sites. A state transition diagram can be developed and
transformed into a system of linear equations which can be solved. Unfortunately this
requires different state diagram for different number of sites. What we want is a single,
general solution valid for any number of sites.

The number of states in the transition diagram soon becomes unmanageable, even with a
moderate number of sites. The resulting system of equations and the general solution will
also be complex. We will therefore look into an alternative way to attack the problem.

As said before, the failure intensity of a given node is �n. With a N node system the node
failure rate for the system becomes N times higher, i.e. N�n. This means that the MTTF
for node failures is 1

N�n
. Using off-line self repair the system becomes unavailable for each

failure and remains so for a time �rr = 1
�r

until self repair has completed.

UNN; off-line =

1
�r

1
�nN

=
�nN

�r
(8:8)

Equation 8.8 does neither account for more than one failure at the same time, nor the risk
of loosing all replicas of data. But, comparing this equation with Equation 8.6 we see that
they are identical. This confirms that the simplifications done are valid for two sites. It is
interesting to see that number of sites does not directly influence the unavailability. But,
since �r is a function of S it therefore exists an indirect influence.

For on-line self repair this is a bit more complicated. Figure 8.3 shows a system with three
sites and a total of 15 nodes with three fragment replicas. The three fragments with replicas
on stored node n0

3 have replicas on nodes n1
1, n1

2, n1
4, n2

0, n2
2, and n2

3. Since the replicas stored
on one node are distributed over three nodes on each of the other sites the replica fanout
Zr is three. Assume that the system is available when node n0

3 fails. The system becomes
unavailable if the two other replicas of any of the three fragments are lost due to the other
nodes being unavailable. The probability that both node n 1

1 and n2
0 are unavailable is:

p2 � 2G(
�n
�r

)2

This equation can be found by solving the steady state probabilities of a system with two
components that can fail. The system is given by the equations:

2�np0 = �np1

(G�n + �r)p1 = 2�np0 + �np2

�rp2 = G�np1

p0 + p1 + p2 = 1

where pi is the probability of i nodes having failed. Assuming p0 � 1 and G�n � �r we
get:
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Figure 8.3: Alternative replicas to fragment replicas residing on one node. The three fragments with
replicas stored on node n0

3 on site s0 also have replicas distributed over several nodes on site s1 and
site s2.
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p1 =
2�n
�n

p0 �
2�n
�n

p2 =
G�n
�r

p1 � 2G(
�n
�n

)2

Thus, the probability that n1
1 and n2

0, or n1
2 and n2

2, or n1
4 and n2

3 are unavailable is (assuming
p2 is very small):

p = Zrp2 = 3 � 2G(
�n
�r

)2

Applying this to an arbitrary number of sites S we get:

p(S�1) =
(S � 1)!

G
(G

�n
�r

)S�1

Thus, the probability of all the other replicas of any of Zr fragments are unavailable
becomes:

p =
Zr(S � 1)!

G
(G

�n
�r

)S�1

This probability expresses the fraction of node failures that will cause a loss of all replicas
of a fragment and cause system unavailability during full system recovery. The failure
intensity for system failure is the product of node failure intensity, number of nodes and
this probability. Thus,

UNN; on-line =

1
�a

1
G�nNp

=
ZrN(S � 1)!�n

�a
(
G�n
�r

)S�1 (8:9)

Substituting S = 2 into Equation 8.9 we see that it is equivalent to Equation 8.7. This
confirms that the simplified model is correct for two sites.

8.1.3 Factors influencing unavailability

The unavailability is a function of the parameters �n, �(1)x , G, N , �r, and �a. The most
important factors influencing the parameters and therefore indirectly also the unavailability
are:

HW technology: The failure rate of the nodes (�n) and the associated reliability of the
nodes are mainly given by the technology used to implement the nodes and the
communication network. Hardware defects common between different components
are reflected through the G factor.
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Environment: The environment the hardware operates in also affects the node failure
rate �n. High temperature, temperature fluctuations, vibrations, mechanical shocks,
unstable power supply, and high humidity all reduce the lifetime of electrical equip-
ment and thereby increase the failure intensity. Environment problems will also
cause highly correlated errors, i.e. influencing G.

Maintenance organization: The maintenance organization is responsible for replacing
failed (corrective maintenance) or soon to fail (preventive maintenance) components.
Preventive maintenance avoids the increase of the failure rate when the HW reaches
the end of the lifetime and therefore affects �n. The maintenance organization is also
responsible to act upon serious failures and get it running again. A loss of all replicas
of one or more fragments is such a failure. The time it takes from the system becomes
unavailable until it has recovered gives �a and is a function of the organizations
ability to handle such problems.

Problem size: The transaction load and database volume will decide the size of a scalable
system. For the type of systems described here the number of nodes in the system N
is the dimensioning factor.

Declustering strategy: The declustering strategy has several characteristics which influ-
ence the unavailability. The various fanouts Zr, Zt, Zs, and Zf affects probability
of double failure and time it takes to do self repair. The declustering strategy also
decides the redundancy and sparing strategy. More nodes are necessary to handle an
increased redundancy, and the sparing strategy is important for the self repair times.
The result is that �r and N depend on the declustering strategy.

Self repair strategy: Off-line self repair minimizes repair times compared to on-line self
repair and therefore influences �r. A prerequisite for on-line self repair is extra
capacity available for doing the repair. This means that more nodes than strictly
necessary must be provided for this strategy to be deployed. Off-line self repair does
not need this redundant capacity resulting in a lower number of nodes N .

Read/write operation mix Read operations only need to access a single tuple replica. A
write operation (insert, delete, or update) must access all replicas of the tuple. A
write operation on a tuple located on a disk page not cached in primary memory,
must first read the page from disk, update the page, and write the updated page back
to disk. This is twice as many disk accesses as a simple read tuple operation. If the
fraction of write operations increases, the load increases and therefore the need for
more nodes N .

If on-line self repair is provided, hot stand-by replicas must take over as primaries
until the lost replicas are reconstructed. Since hot stand-bys only are accessed by
write operations, read operations will contribute to an additional load on the nodes
having hot stand-by replicas. This additional load will both contribute to an increased
need for processing capacity on each node and/or reduce the capacity available for
self repair. A higher fraction of read operation will therefore either lead to an increase
of the number of nodes N or an increase of self repair time ( 1

�r
).

Given a required transaction load and database volume, the choice of parameters giving
an optimal unavailability is not trivial. Especially the relationship between � r, N , �(1)x and
the declustering strategy is complex. An analysis of the system is therefore required.
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8.1.4 Comparative unavailability study

Given a multi site configuration with known node failure rate �n, catastrophe recovery
time 1

�a
, transaction load, and read/write mix, we want to determine what are the optimal

choices for self repair strategy, sparing strategy, declustering strategy, and number of
nodes N . The repair strategy is either off-line self repair or on-line self repair. Sparing
strategy is either dedicated spare or distributed spare. The common characteristics for the
declustering strategies are the fanouts Zr, Zt, Zf , and Zs, which range from 1 and upwards
in integer steps. Number of nodes N is downward limited by the minimal setup able to
mask a site failure. Let the number of replicas be identical to the number of sites (S = R).

Node load and system size

Let L denote the transaction processing load on a node. This load is an abstraction
composed of CPU and disk load, where the capacity of a node is limited by whatever is
the weakest resource. The actual capacity measured in transactions per second or similar
is neither of interest here, nor necessary for finding the optimal strategy and parameters.
Instead we will set the capacity of a node to 1.0 and let the load vary between 0.0 (unused)
and 1.0 (saturated).

A node will have various tasks that must be served concurrently, and the overall load L is
the aggregate of the load contributed by each task. There are four major types of tasks:

Lnormal: Load caused by normal transaction processing. Performed on all nodes storing
fragment replicas.

Lmasking: Transaction processing load caused by masking a node failure. Performed on
nodes storing hot stand-bys forced to take over as primaries.

Lcopyout: Load caused by copying data to another node during self repair. Performed on
nodes storing replicas of lost fragment replicas.

Lcopyin: Load caused by receiving and reconstructing fragment replicas. Performed on the
new home locations of the fragment replicas.

Which tasks that are active at any time and the load of each of these tasks vary with the
state of the system and the repair and sparing strategies. Table 8.1 shows how the overall
load vary with the role of the system. A sender node is a node storing a fragment replica that
is reconstructed and is sending it to one or more receiver nodes which have spare capacity to
store the new data and handle the extra load. Other nodes are the nodes not involved in the
self repair process, and which are neither sender nor receiver nodes. By forcing an ongoing
self repair to be completed before a new one is started, it is ensured that it is impossible for
a node to be both a sender and a receiver at the same time.

The capacity of a node must be large enough to handle normal transaction processing
load Lnormal and masking load caused by a specified number of concurrent node failures
Lmasking. In case of on-line self repair the unused capacity can be used for self repair
(Lcopyin or Lcopyout). The time self repair takes, �rr, is a function of:

� the number of sender nodes,
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Off-line self repair On-line self repair

Dedicated Distributed Dedicated Distributed
spare spare spare spare

Sender nodes Lcopyout Lcopyout

Lnormal

+Lmasking

+Lcopyout

Lnormal

+Lmasking

+Lcopyout

Receiver nodes Lcopyin Lcopyin Lcopyin
Lnormal

+Lcopyin

Other nodes 0 0 Lnormal Lnormal

Table 8.1: Node load profile depending on sparing and repair strategy.

� the number of receiver nodes,

� the unused capacity on the sender nodes,

� the unused capacity on the receiver nodes,

� the work necessary to read from disk and send each tuple,

� the work necessary to receive and write onto disk each tuple, and

� the number of tuples to replicate (same on sender and receiver side).

It is obvious that the sender side can not send tuples faster than the receivers can receive
them (and opposite), and the time will therefore depend on the slowest of them.

The operations performed on a node are classified as sequential read (sr), random read (rr),
sequential write (sw), and random write (rw) operations. Tuple insert, update, and delete are
all write operations, while tuple retrievals are read operations. Let W sr, Wrr, Wsw, and
Wrw denote the work the respective operations require as a fraction of the capacity of a
node over a time interval (i.e. 1=Wrr is the service rate for random read operations). Also
let `sr, `sw, and `rw, denote the work of the three operations relative to random read. Thus:

Wrw = `rwWrr

Wsr = `srWrr

Wsw = `swWrr

Read and write operations on a given tuple arrive at given rates � r and �w respectively.
� = �r + �w is the total tuple operation arrival rate. �r and �w is the fraction of all
operations arriving that are read and write operations respectively, i.e.:
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�r =
�r

�r + �w
and �w =

�w
�r + �w

thus:

�r = �r� and �w = �w� = (1� �r)�

Self repair times

We will use off-line self repair as a reference when comparing the various strategies. Let
�rr0 be the time it takes to off-line copy all tuples from one node to another, i.e. the time
off-line self repair takes when Zf = Zr = 1 and S = 2. During copying the tuples are
read sequentially on the sender side and written sequentially on the receiver side. It
is reasonable to assume that sequential read and write can be done at the same speed
(`sr = `sw). This assumption is safe to make if this process is disk bound since disks read
and write at the same speed. Therefore, the sender can send the data to the receiver just as
fast as the receiver can receive them and that both will be fully saturated.

Increasing Zr and Zf can reduce the time it takes to copy the tuples through parallelism.
The tuples stored on a failed node is also replicated over Z r nodes on each of the other
(R�1) sites. These nodes can read the lost data in parallel and send them to the Z f receiver
nodes which in parallel will receive them and write the tuples to disk. The parallelism
at the sender and receiver side is therefore respectively Zr(R � 1) and Zf . For moderate
parallelism we will have near linear speedup giving an self repair time equal to:

�rr =
1

min(Zr(R� 1); Zf )
�rr0 (8:10)

Lnormal is the sum of the load caused by reading and writing primary tuples and only
writing hot stand-by tuples. tp is the number of primary tuples on each site and ths is
the number of hot stand-by tuples. The total read operation arrival rate on a node is the
product of arrival rate per tuple �r and the number of tuples tp on the node. The read
load is computed by multiplying the aggregated arrival rate with the work required for
each tuple read Wrr. The same method is used to compute the write load and gives the
following equation for Lnormal.

Lnormal = tp�rWrr + (tp + ths)�wWrw (8:11)

Lmasking is the increased load caused by read operations on tuples located in fragment
replicas modified from hot stand-by to primary fragment replicas while masking a node
failure. The read work originally performed by the failed node will be evenly distributed
over Zt nodes. E.g. Zt = (R � 1)Zr if the nodes sharing fragments with the failed node
distribute the load even among them. The primary fragment replicas located on the failed
node will each have R � 1 hot stand-by replicas distributed over Z r nodes on each or the
R � 1 other sites. Equation 8.12 shows the masking load, Lmasking, computed as the read
part of Lnormal divided by Zt.
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Lmasking =
tp
Zt

�rWrr (8:12)

During reproduction of fragment replicas lost due to a node failure, the tp + ths tuples
originally stored on the failed node will be read in parallel from the other (R� 1)Z r nodes
storing replicas of the same fragments. If copying of these tp+ths

(R�1)Zr tuples takes �rr time

units, tp+ths
(R�1)Zr�rr will be copied per time unit. Multiplying this number with the work

required for sequentially reading a tuple Wsr we get the load Lcopyout:

Lcopyout =
tp + ths

(R� 1)Zr

1
�rr

Wsr (8:13)

The subfragmentation fanout Zf gives the number of nodes receiving the tuples during
self repair. Using the same argumentation as above the equation for L copyin becomes:

Lcopyin =
tp + ths
Zf

1
�rr

Wsw (8:14)

Let M denote the number of nodes excluding spares, i.e. M = SN 0
s. In the initial state all

nodes will have tp = T
M

primary tuples (total number of tuples divided by the number of
nodes). Using a dedicated spare or a demand replacement scheme this holds also when
node failures have been repaired. For distributed spare the tuples originally distributed
over M = N nodes will in average be distributed over M � ê nodes, where ê is the average
number of failed nodes not replaced. So in average each node will have the responsibility for
tp =

T
M�ê

primary tuples. The number of unreplaced nodes will for all practical purposes
be much lower than the total number of nodes in the system, i.e. M � ê, and we can use
tp =

T
M

as an approximation.

Each primary tuple also has R � 1 hot stand-by replicas. These (R � 1)tp tuples will be
uniformly distributed over the M nodes giving ths = (R� 1)tp.

Substituting these results into Equations 8.11, 8.12, 8.13, and 8.14 together with the alter-
native forms for �r , �w, Wrw, Wsr, and Wsw we get:

Lnormal =
T

M
Wrr�(�r +R(1� �r)`rw) (8.15)

Lmasking =
T

M
Wrr�

1
Zt

�r (8.16)

Lcopyout =
T

M
Wrr

R

(R� 1)Zr

1
�rr

`sr (8.17)

Lcopyin =
T

M
Wrr

R

Zf

1
�rr

`sw (8.18)

It can be shown that these equations also hold for symmetric tuple access (read any, update
all) instead of a primary/hot stand-by strategy. The rest of this evaluation is therefore valid
for both strategies.

Let N = N0 be the minimum number of nodes necessary to handle the peek work load
without any node failures and only a single replica (R = 1) of data. Since this is the
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minimum number of nodes necessary to provide service, the nodes will be saturated and
the load equal to 1, i.e. Lnormal = 1.

From the definition for �rr0 earlier in this chapter we know that Lcopyin = Lcopyout = 1
when �rr = �rr0, Zr = Zf = 1, M = N = N0 and R = 2.

To minimize the time used by self repair the capacity should be maximum utilized, i.e.
load should be as close to 1 as possible. Either the sender nodes or the receiver nodes will
be the bottleneck during this repair. By computing the minimum repair times for both the
sender and receiver nodes the overall repair time will be the maximum of the two.

As Table 8.1 on page 135 showed, the load is composed of normal, masking, copyin and
copyout work for various combinations of repair and sparing strategies. For each of
those cases the equations found above can be inserted and solved with respect to � rr.
There are five distinct cases to solve and Equations 8.19 through 8.23 list the solutions.
�rr�x;y;z stands for the minimum time where x is the role (s=sender, r=receiver), y is the
repair strategy (b=on-line, o=off-line) and z is the sparing strategy (d=distributed spare,
s=dedicated spare). A diamond (�) means that equation is valid for any options in that
position.

�rr�s;b;� =
R

Zr2(R� 1)(M
N0
�R+ (R� 1� 1

Zt
) �r
�r+(1��r)`rw )

�rr0 (8.19)

�rr�s;o;� =
1

Zr(R� 1)M
N0

�rr0 (8.20)

�rr�r;b;d =
R

Zf2(M
N0
�R+ (R � 1) �r

�r+(1��r)`rw
)
�rr0 (8.21)

�rr�r;o;d =
1

Zf
M
N0

�rr0 (8.22)

�rr�r;�;s =
1
M
N0

�rr0 (8.23)

Note that all these equations contain the ratio M
N0

which expresses the degree of redundancy
of the active nodes in system (excluding spares). With N =M = N0 the ratio is 1, meaning
that there is no redundancy in the system. If the ratio is equal to 2 then the system has
twice as much processing capacity as necessary to serve one replica of the database. Adding
spares the ratio N

N0
expresses the total over-capacity of the system. This ratio is directly

proportional to the hardware cost of the system.

The self repair times can be considered to be the MTTR for fragment replica loss. This
means that the repair intensity can be written �r = 1

�rr
. Inserting this into Equations 8.8

and 8.9 for unavailability when using off-line and on-line self repair we get respectively
after setting S = R:

UNN; off-line =
�nM

�r
= �nM max(�rr�s;o;�; �rr�r;o;�) (8:24)

and
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UNN; on-line =
ZrN(R � 1)!�n

�a
(
G�n
�r

)R�1 =
ZrN(R� 1)!�n

�a
(G�n max(�rr�s;b;�; �r;b;�))R�1

(8:25)

Among the parameters in the equations for unavailability �rr0, N0, �r, `rw, G, �n, and �a
are functions of application work load, node hardware design, and environment charac-
teristics. Let 
 be a short form for the expression:


 =
�r

�r + (1� �r)`rw

This value depends only on application behavior and details in the DBMS’ buffer policy.
This value will range from 0 to 1.

The other parametersR, N , M , Zr, Zf , and Zt, the repair strategy and the sparing strategy
may we as database system designers choose with the goal to achieve as good availability
figures as possible.

Fanouts and replica strategy

A general observation with respect to optimal value of the fanouts Z r, Zf , and Zt is that
increasing their value either reduces the unavailability or has no effect at all. The only
exception is the case when the receiver side is the saturated side and on-line self repair is
used.

It should be noted that for the distributed spare strategy the refragmentation fanout Z f

affects the receiver side only while Zr and Zt affects the sender side. For the case of
dedicated spare, Zf is by definition equal to 1, and therefore the receiving speed is not a
function of any fanout. The balance between sending and reception speed can be found by
solving �r;y;z = �s;y;z (if any solution exists). Doing this we find that sender and receiver
balance when:

Off-line self repair On-line self repair

Distributed spare Zf = Zr(R� 1) Zf = Zr(R� 1)(1� 


Zt(
M
N0

�1�(1�
)(R�1))
)

Dedicated spare Zr =
1

R�1 � 1 Zr =
M
N0

R

2(R�1)( M
N0

�R+(R�1� 1
Zt
)
)

For a given declustering strategy some of the fanouts can take a single value only, while
others are allowed to vary. Table 8.2 shows possible fanout values for the earlier described
declustering strategies. As the table shows few of the declustering strategies give the
designer any option for adjusting the fanouts for a best possible unavailability.

Although it is sufficient to only study the possible combinations of the fanout values and
find the optimal method, it is also of interest to evaluate the interaction between the fanouts
in the general case to find desirable combination of fanout values. Such an analysis can
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Strategy Zr Zt Zf dedicated spare

Mirrored 1 R� 1 1 yes

HypRa 1 R� 1 Ns � 1 no

Interleaved S � 1 S � 1 1 yes

Chained 2 RNs � 1 1 yes

Q-rot � Ns Zr(R� 1) < Ns yes

Table 8.2: Fanout values and sparing strategies for various declustering strategies.

then lead to the development of a new declustering strategy improving upon the existing
ones.

For the existing declustering strategies the takeover fanout Z t is either equal to M � 1 (all
active nodes except the failed one) or the same as the product of replica fanout and the
number of remaining replicas, i.e. Zr � (R� 1) (the nodes sharing fragments with the failed
one). It is possible to envision declustering strategies using another Z t but it will not be
discussed here. Section 8.1.5 will briefly discuss the takeover fanout and an alternative
takeover strategy.

Three alternatives for sparing have been studied, two based on distributed spare, and one
using dedicated spare. The two using distributed spare have a subfragmentation fanout
of respectively a fixed value 4 and a value equal to the replica fanout.

Figures 8.4 and 8.5 show the unavailability for various fanout values and capacity levels
N
N0

in systems with two replicas. Note that even though the curves in the figures are
continuous, they are only valid for integer fanout values.

Common for both figures is that they start out at low replica fanout with coinciding curves
for distributed spare independent ofZf value. For the same N

N0
ratio the curve for dedicated

spare is a bit above since some of the nodes are reserved to be spares. This condition holds
as long as the sender node is the bottleneck. The breakpoints show the transition when
the receiver takes over as bottleneck. When Zr increases, the time it takes to copy out the
data decreases. For the dedicated spare strategy and the case of a fixed Z f the receiver
capacity is independent of the Zr value and therefore when the receiver nodes become the
limitation the self repair time is constant. If we let Zf scale with Zr, the receiver nodes
never become the bottleneck and therefore lack the break on the curve.

In general we can say that the unavailability is reduced or constant for increasing Z r’s as
long as the sender is the limiting factor. If the receiver is the limiting factor the unavailability
is either increasing or constant for increasing Zr’s.

Figures 8.4 and 8.5 also show that distributed sparing with Zf = Zr is always either equal
to or better than the two other sparing strategies shown in ith figure. The relative rank
between dedicated spare and the distributed spare strategy with fixedZ f depends on the N

N0

ratio. For a low N
N0

ratio distributed spare is the preferred strategy. Since the unavailability
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Distributed spare, Zf = Zr

Distributed spare, Zf = 4
Dedicated spare
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N0

Figure 8.4: Unavailability as a function of replica fanout when Zt = Zr(R � 1) for various ca-
pacity levels and target strategies. `rw = 1, �r = 2

3 , N0 = 100, R = 2, �rr0 = 1
2 hours, G = 1,

1=�n = 100; 000h, 1=�a = 7 � 24hours = one week. For dedicated spare 4% of the nodes are reserved
as spare nodes (i.e. M = 0:96N ).
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Figure 8.5: Unavailability as a function of replica fanout when Zt = N�1 for various capacity levels
and target strategies. `rw = 1, �r = 2

3 , N0 = 100, R = 2, �rr0 = 1
2 hours, G = 1, 1=�n = 100; 000h,

1=�a = 7 � 24hours = one week. For dedicated spare 4% of the nodes are reserved as spare nodes
(i.e. M = 0:96N ).
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decreases when the ratio increases using a fixed Zf and is constant for dedicated sparing,
there is a given ratio value where the rank positions are swapped. The limit value is given
by Equation 8.26.

N

N0
=

�r + (1� �r)`rwR

(�r + (1� �r)`rw)(1� R
2Zf

M
N
)

(8:26)

Using the equation and inserting the numbers used to plot Figure 8.4 and Figure 8.5 we get
that the dedicated spare is better that distributed spare with Z f = 4 when N

N0
is less than

16
9 � 1:76.

Another common observation that can be made based on both the figures is that increasing
the over-capacity ratio N

N0
(without increasing the degree of replication) also improves

the availability. This is a non-obvious result since increasing the number of nodes also
increases the absolute number of node failures per time unit. This is discussed more in
depth later in this section.

By comparing Figure 8.4 and 8.5 we see that as long as the receiver is the bottleneck the
takeover fanout has no effect and the unavailability is identical for the two figures. On
the other hand, when the sender is the limiting factor, the largest takeover fanout value
possible (Zt = N�1) gives the best unavailability. We even see that varying the replication
fanout value has no visible effect in our case and increasing it gives no reward. This means
that it can be held on a low fixed value (e.g. 2).

Since a combination of high Zr and Zf results in a highly parallel copying of data from
one site to another the intersite communication capacity might become saturated. The
communication capacity should therefore be considered when fanout values are chosen so
this is avoided. Either the communication system has to be dimensioned to handle the load
or the fanout values must be adjusted. In general we can say that a more parallel replica
reproduction requires a higher communication bandwidth. Keeping the fanout values low
also keeps the parallelism low and therefore reduces the bandwidth requirement for the
communication.

The conclusion from the discussion on the fanout values is the maximum takeover fanout
gives the best availability. In this case a low replica fanout gives the best result independent
of sparing strategy. Unfortunately using this takeover strategy requires a massive takeover
after a node failure and can in itself result in a significant unavailability which is not
accounted for in the analysis.

Using a minimal takeover fanout (i.e. Zt = Zr) involves a takeover for only the fragments
with a primary replica on the failed node. For this option a high replica fanout combined
with a distributed spare strategy with a redistribution fanout equal to the replica fanout
gives the best availability. For a dedicated spare strategy there exists an optimal value for
the replica fanout.

N
N0

ratio

The N
N0

ratio expresses the degree of hardware redundancy over a “conventional” single
replica system. In other words, this is the hardware cost of the system. By studying the
equations for unavailability it is easy too see that for off-line self repair the ratio has no
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Figure 8.6: Unavailability of a system using on-line self repair and dedicated spares as a function of
the M

N0
ratio for various fanout values. `rw = 1, �r = 2

3 ,N0 = 100, �rr0 =
1
2 h,G = 1, 1=�n = 100; 000h,

1=�a = 7 � 24h = one week.

effect at all! This means that as long as the system is able to handle the work load the degree
of hardware redundance can be kept on a minimum without affecting the unavailability.

For on-line self repair this is a bit more complicated. In case of three or more replicas
(R � 3) a higher ratio always means less unavailability. For two replicas this holds for
the distributed spare strategy and for the dedicated spare strategy with the sender as the
bottleneck. If the receiver is the bottleneck, the ratio has no effect at all. Increasing the
ratio will in this case reduce the Zr value giving the optimal unavailability (see previous
discussion on optimal fanout values).

In general we can conclude that increasing the M
N0

ratio will either reduce the unavailability
or have no effect at all. This can be seen in the Figures 8.4, 8.5, and 8.6. Unfortunately,
increasing the ratio will also proportionally increase the system cost.

In this work we have not tried to optimize the total cost with respect to hardware and
unavailability cost (direct and indirect). The cost function related to unavailability with
respect to frequency and duration is complicated and depends on the application.

Note that the M
N0

ratio has a lower limit which ensures that the work load is served. Systems
using off-line self repair can (in theory) be configured exactly on this minimum limit. On-
line self repair systems will have a higher system cost since they also must include capacity
to handle masking of a node failure and the copy process. The ratio for on-line self repair
systems must be larger than a lower limit value where the unavailability with increase
asymptotic approaching the limit. The limit will be for a system handling the normal work
load and masking of a node failure but not having any capacity for self repair. By solving
the load equations (e.g. Lnormal + Lmasking � 1) with respect to the ratio M

N0
the minimum

values becomes:
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Figure 8.7: Unavailability of a system using on-line self repair as a function of the M
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ratio using

two, three and four replicas. `rw = 1, �r = 2
3 , N0 = 100, �rr0 =

1
2 h, Zr = 4, Zt = Zr(R � 1), G = 1,

1=�n = 100; 000h, 1=�a = 7 � 24h = one week. The sending and reception speed is assumed to
balance.
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The asymptotic behavior of the unavailability close to the limit for on-line self repair can
be seen on Figure 8.6.

Replicas

As long as the node MTTF is much larger than the self repair times and sufficient over-
capacity for self repair is provided, will an increasing number of replicas always give an
improved availability. This is certainly depending on the system to have the capacity
to handle the increased number of replicas both with respect to processing and storage
capacity. Figure 8.7 shows the unavailability for two, three, and four database replicas
with respect to the N

N0
ratio. The unavailability is equal to one (always unavailable) for N

N0
ratio values close to the limit but drops rapidly for increasing ratio values. Note that the
curves soon flatten and little improvement in unavailability is achieved after the initial fall.
For the same N

N0
values it is best to go for the highest number of replicas supporting it. E.g.

the ratio N
N0

= 2 is supported by both two and three replicas, but three replica give a much
better unavailability figure.
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Correlated failures

The G factor expresses the higher probability of a node failure when another failure is
not repaired yet. None of the repair times are influenced by this factor. Therefore the
factor only is a scaling of the unavailability independent of declustering strategy. In our
examples we have used a factor of 1 (i.e. no correlation), but increasing it will only increase
the expected unavailability by a constant factor independent of declustering strategy.

Repair strategy

The ratio between unavailability using off-line self repair and on-line self repair can be
used to decide which strategy is the best, i.e. causes least unavailability. If the ratio is
greater than 1 then on-line self repair should be preferred.

UNN; off-line

UNN; on-line
=

�nN�rr��;o;�
ZrN(R�1)!�n

�a
(G�n�rr��;b;�)R�1

=
�a

Zr(R � 1)!
�rr��;o;�

(G�n�rr��;b;�)R�1 > 1

Reordering this a bit we get that on-line self repair should be used when:

�R�1
rr��;b;�

�rr��;o;�
<

�a
Zr(R� 1)!(G�n)R�1

We see that shorter system recovery times, lower node failure intensity and smaller replica
fanouts favor on-line self repair. We can also assume that 1=G�n � �rr��;b;� i.e. MTTF for a
node is much longer than self repair. This means that a higher number of replicasR greatly
contributes to the favor of on-line self repair.

By inserting 1=�a = 1 week, G = 1, 1=�n = 100; 000 hours, Zr = 10, and R = 2 we get that
off-line self repair must at least be 60 times faster that on-line self repair before it will be
the best choice. This will only occur for very few situations when the N

N0
ratio is very close

to its minimum. In general on-line self repair will be the optimal choice.

8.1.5 Further reduction of unavailability

There is a couple of methods which can be used to reduce the time it takes to do automatic
reproduction of a lost replica that is not incorporated in the model above. Two methods
that can be used when on-line self repair is used are informally discussed in this section.
A formal analysis of them is left for further research.

At a sender node we know that the need to serve transaction requests steals capacity from
the repair process and prolongs it. In the model above we assumed that the sender nodes
had to serve the normal transaction load plus masking a fraction of the transactions that
should have been performed by the failed nodes in addition to reproduction of a lost
replica. Some declustering strategies actually allow both the normal transaction load and
the masking load to be significantly reduced.
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Moving away normal transaction load

Assume that a noden shares data withZr other nodes on another site. If one of theZr nodes
fails, then the Zr � 1 other nodes on the site of the failed node should remain unaffected.
Instead of continuing to serve primary fragment replicas shared with these Z r � 1 nodes,
node n can push its own primary roles to these other nodes. While the other nodes get a
higher load the node that has to send data and mask the failure is relieved from some of its
normal transaction load. This idea is illustrated in Figure 8.8. The only primary fragment
roles that remain are those for the fragments that has no other replicas that can take over,
i.e. the fragments that have to be reproduced.

On the figure we can see how the sender nodes after a failure have the responsibility for
two primary fragment replicas. The remaining nodes on the right hand side which can not
be sender nodes (they do not share data with the failed node) increase their workload from
four to eight primary replicas. When the self repair has completed and the fault-tolerance
level has been restored, the primary and hot stand-by roles are returned to the original
state.

Note that only read operations are moved away from the sender nodes. Write operations
must still be performed on all fragment replicas to keep them up-to-date. This mechanism
therefore has best effect on systems with a low fraction of database writes.

Gradually takeover

Another interesting technique is to open up for transaction processing on the receiver
node(s) before all fragment replicas have been received. Immediately when a fragment has
been completely received the receiver can take over as a primary and gradually become a
normal transaction processing node. It will take over the primary role from the sender node
and relieve it from a part of its load. For each fragment replica that is moved, the transaction
processing load on the sender is reduced, and therefore results in increased reproduction
speed. On the receiver side the increasing transaction load eats of the capacity available
to receive data. This mechanism will therefore only have a positive effect when the sender
is the limiting factor and there is sufficient margin at the receiver nodes to handle the
gradually increasing transaction loads.

This mechanism assumes that each sender node will send several fragments to each receiver
node. This is likely since a database will probably contain several relations,each partitioned
into multiple fragments. If this do not hold, the sender can partition one large fragment
into several small logical fragments.

Both the gradually takeover strategy and the primary role offloading for sender nodes will
have best effect when the N

N0
ratio is low and there are little capacity left to the self repair

process. In this case the increase in reproduction capacity can be several times larger and
thereby reducing the reproduction time to only a fraction.

Both methods described here do not fit into the analysis model developed in this chapter.
The problem lies in the takeover fanout Zt. In the model Zt is invariant over time, which
means that the load is constant as long as repair is done. This does not hold when using
gradually takeover which actually results in a reduction of the load at the sender side as
the repair proceeds. A similar problem applies to the primary role offloading technique.
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Normal operation

Spare nodeSpare node Spare node

Hot-standby fragment replica
Primary fragment replica reproduction

Fragment

During self repair

Figure 8.8: Moving away normal transaction load from sender nodes during dedicated spare replica
reproduction. There are two sites, each with five nodes including one dedicated spare. Each node
stores eight fragment replicas and the replica fanout Zr is four. In the normal situation half of the
fragment replicas are primaries and the other half are hot stand-bys. The wide arrows show how
the replicas are reproduced on the spare node. The other arrows show the corresponding replicas
of fragments located on a node on the site on the left hand side.

148



2 4 6 8 10 12 14

5 � 10�6

2 � 10�6

1 � 10�5

2 � 10�5

U

Zr

HD

MD, ID

CD

QD, dedicated spare

QD, distributed spare

Figure 8.9: Unavailability as a function of replica fanout for the described declustering strate-
gies. `rw = 1, �r = 2

3 , N0 = 100, N

N0
= 2:25, R = 2, �rr0 = 1

2 hours, 1=�n = 100; 000h,
1=�a = 7 � 24hours = one week. For dedicated spare 4% of the nodes are reserved as spare
nodes.

The model assumes that the normal transaction processing load is the same in the normal
state as during self repair. This can be handled by allowing Z t to be negative reflecting the
reduction in transaction processing load.

8.1.6 Declustering strategies comparison

Figure 8.9 shows the position of the different declustering strategies on the unavailability
plots shown in Figures 8.4 and 8.5. The plot is based on an N

N0
ratio equal to 2.25 and two

replicas of the data.

The figure shows that mirrored declustering (MD), interleaved declustering (ID), HypRa
declustering (HD), and chained declustering (CD) is only represented with points in the
diagram since they have no freedom with respect to replica fanout. ID is only a point
since we have chosen to only consider two site systems. Q-rot (QD) is drawn both for a
dedicated and a distributed spare strategy.

With respect to unavailability MD and ID is the two worst strategies headed by HD which
is a bit better. CD is the best choice with its low unavailability figure. QD using distributed
sparing can be configured to have an unavailability close to CD by using a large replication
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fanout. Dedicated spare QD is a bit worse than distributed sparing for small replication
fanouts but are much worse for large fanouts.

The disadvantage with CD is the expensive takeover processing globally adjusting the
primary and hot stand-by fragment partition limits. This can result in a short service
interruption after each node failure which can be classified as unavailability. This can
quickly consume the advantage it has over the other methods which have a much lighter
takeover switch.

In addition to giving low unavailability QD can efficiently support both OLTP and OLCP
operations similar to the Hybrid-Range Partitioning Strategy. It also supports more than
two replicas and as Figure 8.7 showed, a three replica system is several magnitudes better
than those with two replicas. CD is limited to two replicas and can therefore not compete
if three sites can be afforded.

Note that the plots and some of the comparisons are based on a specific set of system
parameters like system size,transaction profiles, and failure and repair rates. The results are
therefore not necessarily correct for all parameter sets and should be used with care. There
are many free variables in the system which makes it difficult to make firm conclusions.
After saying this it should be pointed out that the numbers used are representative for a
real world case and the results we have found give a good indication of system behavior.

8.2 Site failure caused double-faults

The previous section analyzed the unavailability caused by successive failures resulting in
loss of all replicas of one or more fragments. This section will discuss site failures causing
system unavailability either in combination with another site failure, or one or more node
failures. Using two sites we have the following scenarios:

� One site is out of service. The second site fails and the system becomes unavailable.

� One site is out of service. A node on the remaining site fails. All replicas of the
fragments stored on that node are now lost and a part of the database is unavailable.

� One or more node failures have occurred on a site and the system has not managed
to complete self repair yet. The other site fails making the source fragment replicas
unavailable. The site with the failed nodes has an incomplete replica of the database
and the database is partially unavailable.

Note that a site outage not necessarily is caused by a failure resulting in a permanent loss
of the data stored on the site. A network partitioning can be considered to be a temporary
loss of the sites in one of the partitions. When the network is reestablished the sites being
down can be re-synchronized to a consistent database by applying the log collected on the
active sites. This avoids a long lasting full rebuild of the database.

Another cause for downtime not resulting in data loss is maintenance work. A site can be
gracefully shut down to do hardware or software upgrade without the database content is
lost on the site.
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For the sites we are investigating there are two types of site downtime: planned and
unplanned downtime. The planned downtime can be postponed if the other site is down
or any nodes are currently being repaired.

Equations 8.27 through 8.29 give a simplified model for the unavailability of the three
scenarios listed above. USS is the unavailability caused by a double site failure, USN is the
unavailability for node failures during downtime for a site, andUNS for site failures during
node failures. �s is the failure intensity for unexpected site failures, �p is the intensity of
planned site outages, and �n is the node failure rate. �s is the site recovery intensity (both
for planned and unplanned outage), �a is the rate of full system restoration after loosing
all replicas of data, �r is the node self repair rate, and finally Ns is the number of nodes per
site.

USS =
(�s + �p)�s

�s�a
(8.27)

USN =
(�s + �p)Ns�n

�s�a
(8.28)

UNS =
Ns�n�s
�r�a

(8.29)

Continuing with our example system assuming a two site system with 200 nodes and the
following parameters:

1=�n=100,000 hours
1=�s= 1 year
1=�p= 2 months
1=�s = 1 hour
1=�a = 7 days
1=�r = 1/2 hour
Ns = 100 nodes

giving the following unavailability figures:

USS = 1:6 � 10�5

USN = 2:5 � 10�4

UNS = 9:7 � 10�6

For the parameters used by the exampleUSN is dominating the two others with more than
a factor of 10. Looking on the examples presented for UNN in the previous section (e.g.
Figure 8.9) ranging from 1:1 � 10�5 to 2:2 � 10�6 shows us that the same also applies to
double node failures. To improve the overall system availability Equation 8.28 should be
studied and the factors influencing the input variables to the equation changed until the
availability goal is reached.

Note that USN is the dominating factor only for this example. Other configurations have
other parameters and perhaps have another factor that dominate the unavailability.
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The equations above are only valid for system with two sites. For systems with three or
more sites all combinations of node and site failures causing the loss of all replicas of one
or more fragments must be considered and the unavailability computed.

In the previous section we learned that reducing the time it takes to do self repair � rr = 1=�r
not necessarily reduced the unavailability caused by double node failures UNN . Since �r
is variable in the equation for UNS it also influences this unavailability figure. UNN and
UNS should therefore be seen together when the fanouts and other parameters for the
declustering strategies are chosen. Also the use of Ns in the equations for USS and UNS is
an interaction with UNN . Ns is a function of the M

N0
ratio (i.e. Ns =

M
S

= M
N0
� N0

S
). While

a higher capacity ratio reduces UNN it also increases USS and UNS . In the context of the
example above it is better to reduce UNS than UNN and therefore M

N0
should be kept as low

as possible.
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Chapter 9

Conclusions and further work

9.1 Contributions

This thesis has made the following contributions:

Multi-site database cluster

A multi-site architecture for achieving very high system availability has been proposed.
This architecture is based on standard “workstation class” hardware components which
potentially can keep the total system cost down. (Chapter 4).

Multi-site declustering

Several multi-site declustering strategies have previously been proposed. In this work the
declustering strategies have been set into a system. It has been shown how some single-
site declustering strategies can be adapted to multi-site systems, and one of these (Chained
Declustering) seems to provide excellent availability. (Chapter 5 and 6).

New declustering strategies

A new family of multi-site declustering strategies called Minimal Intersecting Set Declustering
has been suggested. This has lead to the invention of a new strategy called Q-rot Declustering
with many degrees of freedom making it suitable to a wide range of applications. It
supports any number of database replicas, executes both OLTP and OLCP transactions
efficiently, and provides good availability. (Chapter 7).

Declustering strategy characterization

A set of characteristics describing the properties of a declustering strategy has been pro-
posed. Functions that can be used to compute the resulting unavailability for declustering
strategies have been developed using a failure model based on these characteristics. This
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model has been used to compare existing declustering strategies. The model has also
lead to a better understanding of the behavior resulting from changing these characteris-
tics, which again can lead to the development of new and better declustering strategies.
(Chapter 6 and 8).

Self repair

The work has been centered around the concept of a self healing database system. Through
spare capacity the fault-tolerance level is restored after a node failure by recreating lost
database fragment replicas. This approach can give unavailability figures several magni-
tudes better than a scheme awaiting manual replacement of failed hardware components.
This scheme can also lead to new and more cost efficient maintenance procedures using
periodic instead of immediate replacement of components. (Chapter 5).

A comparison of repair and sparing strategies has been done in connection with self repair.
It has been found that on-line self repair for all practical purposes is better than off-line
repair. Distributed and dedicated sparing used with self repair have also been evaluated
resulting in a small advantage for distributed over dedicated sparing. (Chapter 8).

9.2 Criticism

The failure model used in the evaluation of the declustering strategies is rather coarse and
many simplifications have been made. One might ask if it is too coarse and whether it is
sufficient to precisely represent the system it models. The goal of the model has not been to
find the precise unavailability. This is not even possible as many of the system parameters
necessary as input to such a model are rather approximate. Hardware reliability figures are
often only predictions and the reliability of software is notoriously difficult to even predict.
Independent of the accuracy of the unavailability figures produced, the model can still be
used to compare the declustering strategies. The model can also be used to study the effect
of changing the various system parameters. It should also be noted that a complex model
might be complicated to use and might lead to not necessarily finding important results.

The study has, like previous work in the field of declustering strategies, only looked on
permanent failures. However, transient errors are much more frequent in the real world
and can be a much more serious problem. It is difficult to draw strong conclusions on
system availability before the effects of such errors are analyzed.

Even data with a nice, evenly distribution will have statistical skews invalidating several
assumptions made in this thesis. The occurrence of real world heavily skewed data makes
this an even worse problem. The absence of treatment of skewed data can make the results
found seriously distorted.

9.3 Further work

This work started out with the goal to solve all aspects of highly available database system
and as one could expect this soon turned out to be an unachievable goal. One after another,
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the planned fields of work were trimmed away ending up with a narrow subject covering
multi-site declustering strategies. It is even more frustrating that there still remains lot of
work in this field.

Below follows a list of topics that should be of interest for further investigations:

� What effect has the communication bandwidth and latency on the system availability?
Especially the use of workstations interconnected with ATM technology could be
studied.

� According to the literature most failures are transient and will disappear when the
operation is retried. These failures are more than a magnitude more frequent than
the hard errors. Even though they are easy to repair they can still contribute to the
unavailability the short time it takes to repair or mask them. These type of failures
should therefore be studied to be able to predict the unavailability caused by them. It
is of little use to have excellent availability figures with respect to permanent failures
if transient failure caused unavailability is dominating.

� The latency from a node fails until the hot stand-bys are ready to mask the error can
cause service interruption and contribute to the unavailability. This latency and the
influence the declustering strategy has on it is a candidate for further research.

� Of the four fanout parameters, takeover fanout was shown not to be able to fully
handle all declustering schemes. Both moving normal transaction load away from
nodes and time variable masking load during self repair showed the insufficiency of
the takeover fanout. Negative fanout values can partially solve this problem. Future
work should try to incorporate these aspects.

� Moving normal transaction load away from nodes participating in self repair would
reduce the duration of self repair and therefore also the unavailability. Eventually
the system cost could be reduced since less over-capacity is required for masking and
self repair for the same unavailability level. A declustering strategy should therefore
be developed utilizing this mechanism.

� There is also a statistical probability for running out of spare capacity before failed
components are replaced. Replacement strategies and spare capacity planning to
optimize system cost and unavailability are topics for future work.

� One assumption made in this thesis was that the system was composed of fail-fast
modules. Even though most errors will behave in this manner there will always exist
some that violate these assumption. Further research should therefore investigate
detection mechanisms deployable in database systems reducing the frequency of
these events.

Several of these paths will be pursued in an on-going project at Telenor Research. A primary
task is to build a research prototype based on some of the ideas proposed in this thesis.
The prototype will be used to both verify these ideas and be a testbed for experiments in
future projects. After having spent so much time on this thesis it is rewarding to see that
there is so much interest in the work that someone is willing it invest in further research in
the field.
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Appendix A

Symbols used in the availability
analysis

Legend to mathematical symbols used for describing declustering strategies and for the
availability analysis.

S — number of sites
Cs — clusters pr. site
N — number of nodes including on-line spare nodes (over all sites)
N0 — minimal number of nodes handling required request intensity
M — number of nodes excluding on-line spare nodes (over all sites)
Ns — nodes per site excluding on-line spare nodes
N 0
s — on-line spare nodes per site

Nc — nodes per cluster
si — site number i
nsi — node number i on site s

F — number of fragments
Fn — fragments per node
R — number of replicas of each fragment
fi — fragment number i (0 � i < F )
f ri — replica r of fi (0 � r < R)
Zr — replica fanout
Zt — takeover fanout
Zf — subfragmentation fanout
Zs — site fanout
�F — fragment stride (1 � �F � N )
�R — range stride (fraction of key value range 0 � �R < 1)

tp — maximum number of primary tuples pr. node
ths — maximum number of hot stand-by tuples pr. node
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Si — system state where i nodes are out of service
Sa — system state where the full system is out of service
pi — probability of being in state Si
ê — average number of repaired node failures

�fn = 1=�n — MTTF node
�
(i)
x — failure intensity for double failures in state Si

G — failure intensity scaling factor for double failures
�fs = 1=�s — MTTF site
�fp = 1=�p — mean time between planned site downtime
�fa = 1=�a — MTTF system (non maskable double failure)
�rn = 1=�n — MTTR node (node replacement)
�rs = 1=�s — MTTR site (site recovery)
�ra = 1=�a — MTTR system (system recovery after double failure)
�rr = 1=�r — mean self repair time after node failure (replica repair)

�rr0 — mean time to copy all data from one node to another

� — operation arrival rate pr. tuple
�w — arrival rate pr. tuple for write operations
�r — arrival rate pr. tuple for read operations
�r — read fraction of total operation count
�w — write fraction of total operation count
Wrw — work to randomly write a tuple (fraction of node capacity)
Wrr — work to randomly read a tuple
Wsw — work to sequentially write a tuple
Wsr — work to sequentially read a tuple
`rw — cost of a random write operation relative to a random read
`sw — cost of a sequential write operation relative to a random read
`sr — cost of a sequential read operation relative to a random read

 — load profile (see equation 8.1.4 on page 139)

A — availability (fraction of time)
U — unavailability (fraction of time)
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Appendix B

General solution to equation 8.5

Let

D = �4
nN(�6 + 11N � 6N 2 +N 3) +

�3
n�a(�6 + (22+7GZr+2G2Z2

r )N + (�18�4GZr)N
2 + 4N 3) +

�3
n�rGZrN(�5 + 3N) +

�2
n�r�a(6� 5GZr + (�9+4GZr)N + 3N 2) +

�2
n�

2
rGZrN +

�n�
2
r�a(�3 + 3GZr + 2N) +

�3
r�a

The general solution to

2
6666666664

�N�n �r 0 0 �a

N�n �(N�1)�n � �r �r 0 0

0 (N�1�GZr)�n �(N�2)�n � �r �r 0

0 0 (N�2�2GZr)�n �(N�3)�n � �r 0

1 1 1 1 1

3
7777777775

2
6666666664

p0

p1

p2

p3

pa

3
7777777775
=

2
6666666664

0

0

0

0

1

3
7777777775

then becomes:

p0 = �a(
�3
n(�6 + 11N � 6N 2 +N 3) + �2

n�r(6� 5GZr + (�5 + 3GZr)N +N 2)

D
+

�n�
2
r(�3 + 3GZr +N) + �3

r

D
)

p1 = �n�aN
(6� 5N +N 2)�2

n + (�3 + 2GZr +N)�n�r + �2
r

D

p2 = �2
n�aN

(�3�n + �nN + �r)(�1�GZr +N)

D
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p3 = �3
n�aN

(�1�GZr +N)(�2� 2GZr +N)

D

pa = �2
nN

�2
n(�6 + 11N � 6N 2 +N 3) + �n�r(�5GZr + 3GZrN) +GZr�

2
r

D
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�3
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D
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D
+
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2
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D

)

Assuming NG�n � �r and N�n < �a we get:

D � �3
r�a

p0 � 1

p1 �
�nN

�r

pa �
�2
nGZrN

�r�a

1� p0 �
�nN

�r
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Appendix C

Article: Application of an abstract
machine supporting fault-tolerance in
a parallel database server

This appendix contains an article published in International Journal of Computer Systems
Science & Engineering, volume 9, number 2, April 1994 [TH94].
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Article, page 134
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